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Abstract

We discuss in this thesis 17 notions of chaos which are commonly used in

the mathematical literature and related de�nitions, namely those being in-

troduced by Devaney, Turbulence, Liapounove, Robinson, Wiggins, Touhey,

Experimantalists, Knudsen, P-chaos, Martelli, Block-Coppel, Li-Yorke, En-

tropy, Auslander, Smital, Kato,and S.Li respectively. We in particular show

that for continuous mappings of a compact interval into itself the notions of

chaos are equivalent ( except the notion in sense of Li and Yorke ) while each

of these is su¢ cient but not necessary for chaos in the sense of Li & Yorke.

We also give examples indicating that in the general context of continuous

mappings between compact metric spaces the relation between these notions

of chaos is more involved.
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1 Preliminaries

1.1 Introduction

The term chaos has �rst been used in 1975 by Li & Yorke in their paper

"Period three implies chaos ", but even before it has been observed that

very simple functions may give rise to very complicated dynamics. One of

the cornerstones in the development of chaotic dynamics in the 1964 paper

"Coexistence of cycles of a continuous mapping of the line into itself " by

Sarkovskii. During the seventies and eighties the interest in chaotic dynamics

has been exploding and various attempts have been made to give the notion

of chaos a mathematically precise meaning. Outstanding works in this con-

text is the 1992 lecture notes "Dynamics in One Dimension "by Block &

Coppel. While up to the end of the eighties the subject of chaotic dynam-

ics was restricted mainly to research oriented publications, the 1986 book

"An Introduction to chaotic Dynamical Systems " by Devaney marked the

point where chaos became popular and began to enter university textbooks

such as "A First Course in Discrete Dynamical Systems " by Holmgren 1994.

The di¤erent de�nitions of chaos being around at the turn of the century

have been designed to meet di¤erent purposes and they are based on very

di¤erent backgrounds and levels of mathematical sophistication. Therefore

it is not obvious how these notions universally accepted de�nition of chaos

might evolve. We want to make a contribution to this question by picking

17 of the most popular de�nitions of chaos and investigating their mutual

interconnections.

1



1.2 Basic De�nitions

Here we will give some introductory de�nitions that will be used several times

in this thises.

De�nition 1.2.1: A metric on a set X is a function d : X � X ! R

that satis�es the following properties:

a. d(x; y) � 0 for all x; y 2 X:
b. d(x; y) = 0 if and only if x = y:

c. d(x; y) = d(y; x) for all x; y 2 X:
d. d(x; y) � d(x; z) + d(z; y) for all x; y; z 2 X:

De�nition 1.2.2: Consider the continuous function f : X ! X.

The dynamical system de�ned by f takes the form xn+1 = f(xn) and

is written as (X; f):

Such functions that describe dynamical system are called maps:

De�nition 1.2.3: Let X and Y be subsets of a metric space Z, such that

X � Y: We say that X is dense in Y if X = Y , i.e. 8x 2 Y; 8" > 0; N"(x)
contains a point in X:

De�nition 1.2.4: Let f be a continuous map f : X ! X. A point x

2 X is said to be a �xed point for f if f(x) = x. The set of �xed points

of f is denoted by: Fix(f) = fx 2 X : f(x) = xg :

De�nition 1.2.5: Let f be a function. The point x is a periodic point

of f with period k if fk(x) = x:

2



In other words, a point is a periodic point of f with period k if it is a

�xed point of fk:

The set of the periodic points of f with period k is denoted by:

Perk(f) =
�
x 2 X : fk(x) = x

	
:

The set of all iterates of the point x is called orbit of x; and if x is a

periodic point, then it and its iterates are called a periodic orbit or a periodic

cycle.

De�nition 1.2.6: Let X be a metric space. We say X is a compact if

every open cover of X has �nite subcover, i.e. if fIigi2J is a collection of
open sets of X such that X �

[
i2J
Ii then there exists a �nite subset A of J

such that X �
[
i2A
Ii:

De�nition 1.2.7: A sequence fxngn2N 2 X, where X is a metric space

with metric d, is Cauchy if 8" > 0; 9N 2 N such that d(xn; xm) < ";

8m;n > N:
X is said to be complete if every Cauchy sequence in X converges.

X is said to be separable if it has a countable dense subset.

De�nition 1.2.8: A homeomorphism h : X ! Y is a continuous and

bijective map with a continuous inverse.

De�nition 1.2.9: Let X,Y be metric spaces and let f : X ! X

and g : Y ! Y be continuous maps. The maps f and g are said to be

topologically conjugate if there exists a homeomorphism h : X ! Y , such

that h � f(x) = g � h(x) 8x 2 X, i.e. the diagram:

3
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X f������������! X

h

??????y
??????y h

Y �����������!g Y

commutes.

A homeomorphism satisfying this condition is called topologically conju-

gacy.

De�nition 1.2.10: Consider the continuous and di¤erentiable map f :

R! R. Then the map f is said to be expanding if jf 0(x)j > 1; 8x 2 R:

De�nition 1.2.11: Let X be a metric space and f be a continuous map

f : X ! X. We say that f is topologically transitive if for every pair of

nonempty open sets U and V in X there exists a positive integer k such

that fk(U) \ V 6= �:

There is another famous de�nition of topological transitivity which is the

next de�nition.

De�nition 1.2.12: The map f : X ! X is topologically transitive if 9
x 2 X such that the orbit ffn(x) : n � 0g is dense in X.

Remark 1.2.13: These two de�nitions of topological transitivity are not
equivalent.

Example 1:2:14: Consider the continuous map f : X ! X where X

= f0g [
�
1
n
; n 2 N

	
with metric d = jx� yj ; 8x; y 2 X: [1]
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The map f is de�ned by f(0) = 0 and f( 1
n
) = 1

n+1
for n = 1; 2; 3; ::::

Then if we choose U =
�
1
2

	
and V = f1g then f does not satisfy de�nition

1:2:11:

Now we can observe that the point x = 1 has a dense orbit in X so the

de�nition 1:2:12 is satis�ed and so it is not equivalent with de�nition 1:2:11:

Remark 1.2.15: Many authors ([1] ; [2]) added assumptions on the phase
space to make these two de�nitions equivalent such as compactness.

The next example shows that this compactness is not enough.

Example 1.2.16: [3] Let X = fa; bg with discrete topology and let
f : X ! X be de�ned as the constant function f(a) = f(b) = a:

The orbit of b is dense. But f is not topologically transitive: if we choose

U = fag ; V = fbg then there is no k with fk(U) \ V 6= �:

Remark 1.2.17: In [2] ; [4] another assumption was added in X: The
assumption thatX is a complete and separable space which is also not enough

( see example two in [3]):

However, in [3] a su¢ cient condition was given under which the two no-

tions are equivalent.

Proposition 1.2.18: Let X be a thick (topological space is thick if no

nonempty open subset U has a �nite subset dense in U) and complete metric

space with a countable base and f : X ! X a continuous function. Then f

is topologically transitive if and only if it possesses a dense orbit.[3]

Proof: Let (Vi)i2I be a countable base for X: For i 2 I the set W =

[n�0 f�n(Vi) is open by continuity of f: This set is also dense in X: Because
of topological transitivity there exists a k > 0 with fk(U) \ V 6= �: This

gives f�k(Vi)\U 6= � andWi\U 6= �: ThusWi is dense. By Baire category

theorem the set B = \i2IW is dense in X:

Now the orbit of any point x 2 B is dense in X: Because, given any

nonempty open U � X; there is an i 2 I with Vi � U and k > 0 with

x 2 f�k(Vi): This means fk(x) 2 Vi � U: Thus the orbit of x enters any U:
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Now let x 2 X have a dense orbit and let U and V � X be nonempty

open subsets. By denseness, the orbit of x will enter both U and V: Let m;n

be the least integers such that fm(x) 2 U and fn(x) 2 V: Assume �rstm < n

set k = n�m: Then obviously fk(U) \ V 6= �:
Now letm � n. The orbit of x can enter V several times before it enters U:

Call these points: f l1(x); f l2(x); :::; f lk(x); (n � li � m ; i = 1; 2; :::; p):

As the set of these points is not dense in V; there is an open subset

� 6= V 0 � V such that V 0 does not contain any of these points. But the

orbit of x is dense in X; so there is q > 0 with f q(x) 2 V�: This q is greater
than m and for t = q �m we get f t(U) \ V 6= �:�

De�nition 1:2:19 : Consider the metric space X with the metric d and

the continuous map f : X ! X. We say that the map f exhibits sensitive

dependence on initial conditions if 9� > 0 such that for any x 2 X and any

open neighborhood N"(x) of x for some " > 0 there exists a point y 2 N"
and n � 0 such that :

d(fn(x); fn(y)) � �:
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2 De�nitions of chaos

2.1 Devaney�s De�nition of Chaos

The Devaney�s de�nition of chaos is the most popular and widely used de�-

nition.

Namely, a self map on a metric space X is chaotic on X if it has three

essential ingredient: the periodic points of the map must form a dense subset,

the map must have sensitive dependence on initial conditions, and the map

must be topologically transitive.[5]

De�nition 2.1.1: The function f : X ! X is chaotic if it satis�es the

following three properties:

i) f is transitive,

ii) the set of periodic points of f is dense in X,

iii) f is sensitive dependence on initial conditions.

We will denote this chaos by D-Chaos.

Remark 2.1.2: In [6] Banks et al prove that [i] and [ii] imply [iii] in
devaney�s de�nition in any metric space.

Theorem 2.1.3 [6]: Let f : X ! X be a continuous map where X is

a metric space. Then if f is topologically transitive and has dense periodic

point then f exhibits sensitive dependence on initial conditions.

Proof: First we observe that we can choose two periodic points p0 and q0
such thatO(p0)\O(q0) = �: (O = orbit): If O(p0) = fp0; p1; p2; :::; pn�1g; and
O(q0) = fq0; q1; q2; :::; qm�1g; we let "0 = 1

2
minfd(pi; qj)g : i = 0; 1; 2; :::n �

1; j = 0; 1; 2; :::;m� 1:
Let x 2 X be an arbitrary point. Then by triangle inequality we have

for any r; s 2 N :
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2"0 � d(f r(p0); f s(qo)) � d(f r(p0); x) + d(x; f s(q0)):

So if d(f r(p0); x) � "0; then d(x; f s(q0)) � "0 for all s 2 N and if

d(f s(q0); x) � "0; then

d(x; f r(p0)) � "0 8r 2 N:

Now we let our �nal " = 1
4
"0 where "0 as in above observation.

Let x 2 X and � > 0 be given with � < ": By the density of the set of

periodic points, there exists a�k periodic point y 2 X such that d(x; y) < �:

By above observation there exists a periodic point p such that:

d(x; fn(p)) � "0 = 4"; 8n 2 N:

Let

U =
k�1T
i=0

f�i(B"(f
i(p)):

Then U is open and nonempty since p 2 U . Since f is transitive there
exists z 2 U and m 2 N such that fm(z) 2 U:
Let r 2 N such that

m

k
< r <

m

k
+ 1or0 < kr �m < k:

Now :

d(x; fkr�m(p)) � d(x; y) + d(y; fkr(z)) + d(fkr(z); fkr�m(p)):

Since

fkr(z) = fkr�m(q) 2 B"(fkr�m(p))
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for some q 2 fm(z) or z = f�m(q); it follows that

d(fkr(z); fkr�m(p)) < ":

Hence we get:

4" � d(x; fkr�m; (p)) < 2"+ d(y; fkr(z)):

This implies that: d(y; fkr(z)) > 2" and since y is of periodic k; d(fkr(y); fkr(z)) >

2"; since y is k-periodic. Therefore by triangle inequality,

2" < d(fkr(y); fkr(z)) � d(fkr(y); fkr(x)) + d(fkr(x); fkr(z)):

Therefore either

d(fkr(y); fkr(x)) > " or d(fkr(x); fkr(z)) > ":�

Remark 2.1.4: In [7] David Assaf shows [i] and [iii] do not imply [ii] in
Devaney�s de�nition and [ii] ; [iii] do not imply [i] ; the next two examples

showing this.

Example 2.1.5: Consider the continuous map f : X ! X de�ned by

f(ei�) = e2i� and X = S1 nfe
2�pi
q : p; q 2 Z; q 6= 0g is a metric space equipped

with the arc length metric.

Now every non-empty subset of X is eventually expanded under iteration

to cover X; so f is transitive.

Also by de�ning in this way the set X we let out all the periodic points

of f (we removed the 2n � 1 roots of unity for all n.[5]) So f has no (dense

) periodic points.

Finally for any given two points in X say ei�; and ei' such that 0 <

j� � 'j < � we can choose n that satis�es 2n < j� � 'j � � < 2n+1 j� � 'j )
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f is sensitive with sensitivity constant �
2
since d(fn(ei�); fn(ei')) > �

2
.

So the map f is not D-chaotic.

Example 2.1.6: [7] Consider the continuous map f : X ! X where

X = S1 � [0; 1] is a metric space equipped with taxicab metric;

d((x1; y1); (x2; y2)) = jx2 � x1j � jy2 � y1j

for every pair (x1; y1); (x2; y2) 2 X:
We de�ne f by

f(ei�; t) = (e2i�; t):

Clearly a point z = (ei�; t) will be a periodic point for f when ei� is the

root of unity of order 2n�1 for some n: So the periodic points of f are dense
in X:

On other hand if we take two sets A and B where A = S1 � [0; 1
2
) and

B = S1 � (1
2
; 1];

then 8n 2 N; we have that fn(A) \B = A \B = � ) the map is not

transitive.

Finally, if we work in the same way as in the above example, it is easy to

conclude that the map f is sensitive.

Remark 2.1.7: [10] Vellekoop and Berglund showed that for continuous
maps on an interval in R; transitivity implies that the set of periodic points
is dense. It follows from Theorem 2:1:3 that transitivity implies chaos.

The proof of this result will be facilitated by �rst establishing the following

lemma.

Lemma 2.1.8: [10] Let f : J ! J be a continuous map on an interval

J in R.

Suppose that there exists a subinterval I of J such that I contains on

periodic points of f . If x; fm(x), and fn(x) are all in I, with 0 < m < n,

then either x < fm(m) < fn(x) or x > fm(x) > fn(x).
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Proof: Let m;n be integers such that 0 < m < n; and let I � J be an

interval with no periodic points of f:

Suppose that for some x 2 I we have x < fm(x); fm(x) > fn(x) and

fm(x); fn(x) 2 I: De�ne a new function g = fm: Then we have s < g(x):

Claim that for all K > 1;

x < g(x) � gk(x):

Now, if g2(x) < g(x); then the function h(z) = g(z) � z is positive at
z = x and negative at z = g(x):

By intermediate value theorem, this implies that h(y) = g(y)� y = 0 for
some y between x and g(x):

This mean that g(y) = fm(y) = y and y is thus a periodic point of f:

But y 2 I; so we have a contradiction.
This proves that x < g(x) < g2(x): By mathematical induction, we may

complete the proof of the claim.

Now, x < gk(x) for all k 2 Z+ and in particular for k = n�m we have

x < gn�m(x) = f (n�m)m(x):

By letting h = fn�m; we have x < hm(x):

Now

fn�m(fm(x)) = fn(x) < fm(x)

or

h(fm(x)) < fm(x):

By an argument similar to that used for g we have:

hm(fm(x)) < fm(x):

It easy to see that the function p(y) = hm(y)� y is positive at y = x and
negative at y = fm(x): Thus by intermediate value theorem, there exists z 2



12

I between x and fm(x) Such that hm(z) = f (n�m)m(z) = z; a contradiction.

This prove that x < fm(x) < fn(x):

The other case be proven analogously.�

Remark 2.1.9: The above lemma can be found in [4] (chapter IV, corol-
lary 10 ) in a more general form:

"If J is a subinterval of I which contains no periodic point of f then,

for any x 2 I; the point of trajectory O(x) which lie in J form a strictly

monotonic (�nite or in�nite sequence )".

Theorem 2.1.10 [10]: Let I be an interval (not necessarily �nite) and
f:I !I a continuous and topologically transitive map. Then 1- The peri-

odic points of f are dense in I and 2- f has sensitive dependence on initial

conditions, that is f is chaotic in the sense of devaney.

Proof: Suppose that f is continuous and topologically transitive. Because

of the result of theorem 2:1:3 we anly need to prove that the periodic points

are dense in I: Suppose that this is not the case, then there exists an interval

J � I containing no periodic points. Take an x 2 J which is not an endpoint
of J; an open neighborhood N  J of x and an open interval E � J nN:
Since f is topologically transitive on I there exists a natural number m > 0

with fm(N)\E 6= � and thus a y 2 J with fm(y) 2 E � J: Since J contains
no periodic points we know that y 6= fm(y) and since f is continuous this

implies that we can �nd a neighborhood U of y with fm(U) \ U = �: Since
U is open set we can use the topologically transitive of f again and �nd an

n > m and a point z 2 U with fn(z) 2 U: But then we have 0 < m < n and

z; fn(z) 2 U while fm(z) =2 U and this violates our earlier lemma (lemma

2:1:8).�

Remark 2.1.11: The �rst result (1) in the above theorem can be found
in [4] chapter V1.5, lemma 41 but the proof uses a lot of other highly non-

trivial results.
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Remark 2.1.12: The preceding theorem fails to hold for non intervals

or higher dimensional space or even for the unit circle S1 as may be seen in

the following example.

Example 2.1.13: Consider the rotation map R� : S1 ! S1 de�ned by

R�(�) = � + 2��;

where � is an irrational number let � 2 S1: Then

Rm� (�) 6= Rn�(�) if m 6= n:

otherwise, � + 2�m� = � + 2�n�; which implies that 2�(m� n)� = 1: Thus
� is integer. But since � is irrational we must have m = n: Hence the orbit

O+(�) is an in�nite set in S1:

Since O+(�) is a bounded sequence, it must have a convergent subse-

quence. Therefor, for " > 0 there exist positive integer r; s with jRr�(�)�Rs�(�)j <
": Without loss of generality, we may assume that m = r � s > 0: Since R�
preserves arc length in S1; it follows that:

jRm� (�)� �j = jRs�(Rm� (�))�Rs�(�)j

= jRr�(i�)�Rs�(�)j < "

Now under Rm� ; the arc of length less than " connecting � to R
m
� (�) is

mapped to the arc, of less than "; connecting Rm� (�) to R
2m
� (�): This arc, in

turn, is mapped to the arc of length less than " joining R2m� (�) to R
3m
� (�);

etc. So the points �;Rm� (�); R
2m
� (�); :::; partition S

1 into arcs of length less

than ": But since " was arbitrary chosen, it follows that O+(�) intersects

every open arc in S1; and thus O+(�) is dense in S1:

Observe that R� has no periodic points in S1:
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Now we will give some examples to note that there are no other triv-

ialities in devaney�s de�nition when restricted to interval. [10](example

2:1:14; 2:1:15; 2:1:18)

Example 2.1.14 : Let f(x) = x on (�1;1); clearly the periodic
points of f are dense in R but doesn�t need to have sensitive dependence on

initial conditions.

for �nite case take I = [0; 1]; f : I ! I; f(x) = x:

­5 ­4 ­3 ­2 ­1 1 2 3 4 5

­5

­4

­3

­2

­1

1

2

3

4

5

x

y

Figure 2.1.1: f (x) = x

Example 2.1.15 : De�ne on I = R+ the function

f(x) =

8>>>><>>>>:
3x ; 0 � x < 1

3

�3x+ 2 ; 1
3
� x < 2

3

3x� 2 ; 2
3
� x < 1

f(x� 1) + 1 ; x � 1
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This function has sensitive dependence on initial conditions and its peri-

odic points are dense but it is not transitive to show that f has sensitive

dependence on initial conditions, we need to prove the following two propo-

sitions.

Proposition 2.1.16: Consider the continuous and di¤erentiable map f :
I ! I. If f has positive Lyapunove exponent then f has also sensitive

dependence on initial conditions.

Proof: First recall that we de�ne the Lyapunove exponent of x say �(x)

as:

�(x) = lim
n!1

1

n

n�1P
i=0

log jf 0(xi)j ;8xi 2 I:

Now we make this motivation: consider the map xn+1 = f(xn) and let the

point x0; x�0 be originally displaced by � =
��x0�0 � x0�� : Then after n iterations

of the map we get:

�xn =
��x0�n � xn�� = jfn(x0 � �)� fn(x0)j = �en�(x0)::::::::::(1);

in the limits � ! 0 and n!1: If we solve the last relation with respect
to �(x0) we get:

�(x0) = lim
n!1

lim
�!0

1

n
log

����fn(x0 + �)� fn(x0)�

���� = lim
n!1

1

n
log

����dfn(x0)dx

����
= lim

n!1

1

n
log

�����
n�1Y
i=o

f 0(xi)

����� = lim
n!1

n�1X
i=0

log jf 0(xi)j :

Consider a point x0 2 X: Now we choose a point x00 close to x0:Then from
relation (1) we have

�xn = jfn(x0 + �)� fn(x0)j = jx0n � xnj = �x0en�(x0) = �;
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where �x0 = jx00 � x0j and x00 = x0 + � ) en�(x0) = 1
�(x0)

log
��� ��x0 ��� :

Choosing some � for given x0 then 9x00 2 N"(x) such that 8" > 0 after

m > n iterations we get

jfm(x00)� fm(x0)j = �x0em�(x0)

= �x0e
(m�n)�(x0)en�(x0) = e(m�n)�(x0)� > �;

then f has sensitive dependence on initial conditions.�

Proposition 2.1.17: Every expanding map f : I ! I has sensitive

dependence on initial conditions.

Proof: Since the map f is expanding, we have jf 0(xi)j > 1;8xi 2 I. Now
the Lyapunove exponent of f at the point x is given by

�(x) = lim
n!1

1

n

n�1X
n=0

log jf 0(xi)j :

Since

jf 0(xi)j > 1) log jf 0(xi)j > log 1 = 0

)
n�1X
n=0

jf 0(xi)j > 0)
1

n

n�1X
n=0

jf 0(xi)j > 0

) lim
n!1

1

n

n�1X
n=0

jf 0(xi)j > 0 i:e:�(x) > 0:

Hence we have that f is sensitive.�

Now we return to example 2:1:15 : f has sensitive dependence on initial

conditions since jf 0(xi)j = 3 8x 2 I: Note that fn has 3n � 2 �xed points
between any two integer values with distance between these points smaller

than (1
3
)n�1; so the periodic points are dense. But since f([0; 1]) = [0; 1] the

function is not topologically transitive. For �nite case take I = [0; 2]:
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Example 2.1.18 : Let f : I ! I; where I = [0; 3
4
];be de�ned as:

f(x) =

(
3
2
x ; 0 � x < 1

2
3
2
(1� x) ; 1

2
� x � 3

4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

y

Figure 2.1.2: The graph of f (x)

Since jf 0(xi)j > 1; f is sensitive, but there can be no periodic points

in (0; 3
8
) since any trajectory with initial value in this subinterval will not

return there.

For in�nite case take f(x) = 2x on R+:
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0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

x

y

Figure 2.1.3 :f (x) = 2x

Before ending this section we will give one example which satis�es the

three conditions of Devaney�s de�nition.

Example 2.1.19: Consider the Bernolli shift map B(x) : [0; 1) ! [0; 1)

given by:

B(x) = 2xmod 1 =

(
2x ; 0 � x < 0:5

2x� 1 ; 0:5 � x < 1
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

y

Figure 2.1.4: The graph of B (x)

We will show that B(x) is transitive using symbolic dynamics. We let
P

be the metric space of all in�nite sequences containing 00s and 10s equipped

with the metric

�(s; J) =
1

2i
jSi � Jij ; 8S = (S0S1S2:::)

and J = (J0J1J2:::) 2
P
and we de�ne � :

P
!
P

given by

�(S0S1S2:::) = (S1S2S3::)

Then there exist a point x = (0100011011000001:::) created by blocks of

0�s and 1�s, which has a dense orbit. So � is transitive and then B (x) is

transitive [2] :

We have that

fix (B) = Per1 (B) = 0 ; jPer1 (B)j = 1 = 21 � 1:
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The second iterated map B2 is given by B2 = 4xmod 1 and

Per2 (B) =

�
0;
1

3
;
2

3

�
=) jPer2 (B)j = 3 = 22 � 1

Generalizing this result the n0th iterated map is given by Bn = 2nxmod 1:

So

Pern (B) =

�
0;

1

2n � 1 ;
2

2n � 1 ; :::;
2n � 2
2n � 1

�
and jPern (B)j = 2n � 1:
Now lim

n!1
jPern (B)j =1; so 8" > 0; N" (x) will contains a periodic point.

Hence the periodic points of B are dense.

Also since B (x) = 2xmod 1; B0 = 2 8x 2 [0; 1) except for x = 0:5; so

B (x) has sensitive dependence on I.C.

2.2 Periodic Orbits and Turbulence

In this section we will derive a number of results of independent interest to

give the notion of chaos in sense of turbulence. However we will prove the

important theorem: sarkoviski theorem[15] which played an important rule

in chaos theory. I follows chapters "I" and "II" in block and coppel�s book:

Dynamics in one dimension[4].

Lemma 2.2.1: If J is a compact subinterval such that J � f(J), then
f has a �xed point.

Proof: if J = [a; b] if f (a) = a or f (b) = b then it is done. If not, then

for some c; d 2 J we have f(c) = a; f(d) = b: Now consider g (x) = f (x)� x
on the interval [c; d] :Thus g(c) = f (c) � c = a � c < 0; g(d) = f (d) � d =
b� d > 0; and the result follows from the intermediate value theorem.�

Lemma 2.2.2: If J;K are compact subintervals such that K � f(J),
then there is a compact subinterval L � J such that f(L) = K.
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Proof: Let K = [a; b] and let c be the greatest point in J for which

f(c) = a: If f(x) = b for some x 2 J with x > c; let d be the least. Then
we can take L = [c; d]: Otherwise f(x) = b for some x 2 J with x < c: Let
c0 be the greatest and let d0 � c0 be the least x 2 J with x > c0 for which

f(x) = a: Then we can take L = [c0; d0]:�

Lemma 2.2.3: If J0; J1; :::; Jm are compact subintervals such that Jk �
f(Jk�1), 1 � k � m; then there is a compact subinterval L � J0 such that
fm(L) = Jm and fk(L) � Jk; 1 � k < m:
If also J0 � Jm, then there exists a point y such that fm(y) = y and

fk(y) 2 Jk,0 � k < m:

Proof: The �rst assertion holds for m = 1, by Lemma 2:2:2. We assume

that m > 1 and that it holds for all smaller values of m: Then we can choose

L0 � J1 So that fm�1(L0) = Jm and fk(L0) � Jk�1; 1 � k < m� 1: We now
choose L � J0; so that f(L) = L0: The second assertion follows from the �rst
by Lemma 2.2.1.�

An application of these ideas the following proposition.

Proposition 2.2.4: Between any two points of a periodic orbit of period
n > 1 there is a point of a periodic orbit of period less than n.

Proof: let a < b two adjacent points of the orbit of period n: Since there

is one more point of the orbit to the left of b than to the left of a we must

have fm(a) > a; fm(b) < b for some m such that 1 � m < n: It follows

at once that fm(c) = c for some c such that a < c < b; assuming that fm

is de�ned throughout [a; b]: However, the same conclusion can be reached

without this assumption. For if Jk =
�
fk(a); fk(b)

�
is the closed interval

with endpoints fk(a); fk(b) then Jk = f(Jk�1); 1 � k � m: But J0 � Jm;
since fm(a) � b; fm(b) � a: The result now follows from Lemma 2.2.3. �

Suppose that f has a periodic orbit of period n > 1: Let x1 < x2 < ::: <

xn be the distinct points of this orbit and set Ij = [xj; xj+1]; 1 � j < n: We
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associate a directed graph, or digraph in the following way: The vertices of

the direct graph are the subintervals I1; I2; :::; In�1 and there is an are Ij ! Ik

if Ik is contained in the closed interval [f(xj); f(xj+1)]:

Properties of digraph:

[i] For any vertex Ij there is always at least one vertex Ik for which

Ij ! Ik:

It is always possible to choose k 6= j unless n = 2:
[ii] For any vertex Ik there is at least one vertex Ij for which Ij ! Ik; it

is always possible to choose j 6= k unless n is even and k = n
2
:

[iii] The digraph always contains a loop.

De�nition 2.2.5: A cycle J0 ! J1 ! ::: ! Jn�1 ! J0 of length n in

the digraph will be said to be a fundamental cycle if J0 contains an endpoint

c such that fk(c) is an endpoint of Jk for 1 � k < n:

Proposition 2.2.6: A fundamental cycle always exists and it is unique.

Proof: without loss of generality, take c = x1 so that J0 = I1: Suppose

J0; :::; Ji�1 have been de�ned. If Ji�1 = [a; b]; so that f i�1(c) is either a or

b; we must take Ji to be the uniquely determined interval Ik � [f(a); f(b)]
which has f i(c) as one endpoint. Then Jn = J0 and we obtain a cycle of

length n:�

De�nition 2.2.7: A cycle in a digraph is said to be primitive if it does
not consist entirely of a cycle of smaller length described several times.

Lemma 2.2.8: Suppose f has aperiodic point of period n > 1. If the

associated digraph contains a primitive cycle J0 ! J1 ! :::! Jm�1 ! J0 of

length m, then f has a periodic point y of periodic m such that fk(y) 2 Jk,
0 � k < m:
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Proof : By Lemma 2.2.3 there exists a point y such that fm(y) = y and

fk(y) 2 Jk; 0 � k < m: Since the cycle is primitive and distinct intervals

Jk have at most one endpoint in common it follows that y has a period m;

unless possibly y = xi for some i and n is a divisor of m: This possible

only if the cycle is a multiple of the fundamental cycle since, given Jk�1; the

requirements fk(y) 2 Jk and Jk�1 ! Jk uniquely determine Jk:�

Example 2.2.9: Suppose c is a periodic point of period 3 with f(c) <
c < f2(c): The corresponding directed graph has two vertices, namely the

interval I1 = [f(c); c] and I2 = [c; f 2(c)] connected in the following way:

x I1 � I2

corresponding to the loop I1 ! I1 there is a �xed point of f and corre-

sponding to the primitive cycle I1 ! I2 ! I1 there is a point of period 2.

For any positive integer m > 2 there is a point of period m; corresponding

to the primitive cycle:

I1 ! I2 ! I1 ! I1 ! :::! I1 of length m:

Thus there are orbits of period n for every n � 1:

Proposition 2.2.10: If f has a period point of period > 1, then it has

a �xed point and a periodic point of period 2.

Proof: The �rst assertion follows at once from the fact that two digraph

of a periodic orbit always contains a loop, i.e. if f has no �xed point then

either f(x) > x for all x or f(x) < x and hence f has no periodic point.

The second assertion: let n be the last positive integer greater than 1 such

that f has a periodic point of period n: We will assume n > 2 and deduce

a contradiction. In fact the fundamental cycle decomposes into two cycles

of smaller length ,each of which is primitive. Since at least one of these has
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length greater than 1,it follows from lemma 2.2.8 that there is a periodic

point with period strictly between 1 and n:

Proposition 2.2.11: Suppose f has a periodic orbit of odd period n >
1; but no periodic orbit of odd period strictly between 1 and n: If c is the

midpoint of the orbit of odd period, n then the points of this orbit have the

order:

fn�1(c)<fn�3(c)<...<f2(c)<c<f(c)<...<fn�2(c).

or the reverse order:

fn�2(c) < ::: < f(c) < c < f 2(c) < ::: < fn�3(c) < fn�1(c):

In either case the associated digraph is given by the following �gure where

J1 = [c; f(c)]; Jk =
�
fk�2(c); fk(c)

�
for 1 < k < n :

x J1 ! J2 ! J3 ! :::! Jn�3 ! Jn�2 ! Jn�1x?? x?? x?? ??y
 ����������������������������������������������

Proof: The fundamental cycle decomposes into two smaller primitive cy-

cles, one of which has odd length. This length must be one, since f has no

orbit of odd period strictly between 1 and n:Thus the fundamental cycle has

the form:

J1 ! J1 ! J2 ! :::! Jn�1 ! J1:

where Ji 6= J1 for 1 < i < n: If we had Ji = Jk; where 1 < i < k < n; then
by omitting the intermediate vertices we would obtain a smaller primitive

cycle. Moreover, by excluding the loop at J1 if necessary, we can arrange

that its length is odd. Since this is contrary to hypothesis we conclude that

J1; :::; Jn�1 are all distinct and thus a permutation of I1; :::; In�1: Similarly

we cannot have Ji ! Jk if k > i + 1 or if k = 1 and i 6= 1; n � 1: Suppose
J1 = Ih = [a; b]: Since J1 is directed only to J1 and J2; the interval J2
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is adjacent to J1 on the real line and f maps one endpoint of J1 into an

endpoint of J1 and the other endpoint of J1 into an endpoint J2: Since the

end points are not �xed points, there are just two possibilities:

either

xh = a; xh+1 = f(a); xh�1 = f
2(a);

or:

xh+1 = b; xh = f(b); xh+2 = f
2(b):

We consider only the �rst case, the argument in the second case being

similar. For n = 3 the result follows immediately. Suppose n > 3: If f 3(a) <

f 2(a) then J2 ! J1; which is forbidden. Hence f 3(a) > f 2(a): Since J2 is

not directed to Jk for k > 3 it follows that J3 = [f(a); f3(a)] is adjacent to

J1 on the right. If f 4(a) > f 3(a) then J3 ! J1; which is forbidden. Hence

f 4(a) < f 3(a) and since J3 not directed to Jk for k > 4; J4 = [f 4(a); f2(a)]

is adjacent to J2 on the left. Proceeding in this way we see that the order of

the intervals Ji on the real line is given by:
Jn�1

[fn�1(a);fn�3(a)] :::
J4

[f4(a);f2(a)]
J2

[f2(a);a]
J1

[a;f(a)]
J3

[f(a);f3(a)]
::: Jn�2
[fn�4(a);fn�2(a)]

Since the endpoint of Jn�1 are mapped into a and fn�2(a) we have Jn�1 !
Jk if and only if k is odd. It is readily veri�ed now that there are no others

arcs in the digraph besides those already found.�

Proposition 2.2.12: If f has a periodic point of odd period n > 1, then
it has a periodic points of arbitrary even order and periodic points of

arbitrary

odd order > n.

Proof: We may suppose that n is minimal so that the associated digraph

is given by proposition 2.2.11. If m < n is even then Jn�1 ! Jn�m !



26

Jn�m+1 ! :::! Jn�1 is primitive cycle of length m: If m > n is even or odd

then:

J1 ! J2 ! :::! Jn�1 ! J1 ! J1 ! :::! J1;

is a primitive cycle of length m: �

Lemma 2.2.13 : If c is a periodic point of f with periodic then for
any positive integer h, c is a periodic point of fh with periodic n

gcd(h;n)
where

gcd(h; n) denotes the greatest common divisor of h and n. Conversely, if c

is a periodic point of fh with period m then c is a periodic point of f with

period mh
d
, where d divides h and is relatively prime to m.

Proof: Suppose c has period n for f and letm = n
gcd(h;n)

: Then fmh(c) = c:

On the other hand, if fkh(c) = c then n divides kh and hence m divides k:

Suppose c has period m for fh: Then c has period n for f; where n divides

mh:

Thus we can write n = mh
d
: Then by what we have already proved,

n
gcd(h;n)

= nd
h
and hence gcd(h; n) = h

d
: Thus de = h for some e and gcd(de;me) =

e:�

Now we are ready to state and prove the "sarkoviskii theorem".

Theorem 2.2.14: Let the positive integers be totally ordered in the fol-
lowing way

3 � 5 � 7 � 9 � ::: � 2:3 � 2:5 � ::: � 22:3 � 22:5 � ::: � 23 � 22 � 2 �
1

If f has a periodic orbit of periodic n and n < m then f also has a

periodic orbit of period m:

Proof : We give the proof initially for f : I ! I: Let n = 2dq; q is odd.

Suppose �rst that q = 1 and m = 2e where 0 � e < d: By proposition 2.2.10
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we may assume e > 0. The map g = f
m
2 has a periodic point of period 2d�e+1

by Lemma 2.2.13 and hence also a periodic point of period 2 by proposition

2.2.10. This point has period m for by Lemma 2:2:13 again. Suppose next

that q > 1: The remaining cases to be considered are m = 2dr; where either

(i) r: even (ii) r: odd , r > q:

The map g = f 2d has a periodic point of period q and hence also has a

periodic point of period r; by proposition 2:2:12: In case (i) this point has

period m = 2d:r for f: In case (ii) its f -period is 2e:r for some e � d: If e = d
we are �nished. If e < d we can replace n by 2e:r: Sincem = 2e(2d�e:r) it then

follows from case (i) that f also has a periodic point of period m: We now

give the proof for f : I ! R; let x1 and xn denote respectively the least and

greatest points of a periodic orbit of f of period n: Then k : [x1; xn][[f [x1; xn]
is a compact interval. De�ne a continuous map g : K ! K by sitting

g(x) = f(x1) if x � x1; g(x) = f(x) if x 2 [x1; xn], and g(x) = f(xn) if

x � xn: Since g has a periodic orbit of period n, g also has a periodic orbit
of period m; by what we have already proved. Since this orbit of period m

is contained in the interval [x1; xn]; it is also a periodic orbit of f:�

De�nition 2.2.15 : The map f is said to be Turbulent if there exist
compact subintervals J,K with at most one common point such that

J [K � f(J) \ f(K):

If the subintervals J;K can be chosen disjoint, it is said to be strictly

turbulent.

Remark 2.2.16: It follows from the de�nition that if "f" is (strictly)

turbulent then "fn" is (strictly) turbulent for every n > 1:

Remark 2.2.17: The map "f" may be turbulent but not strictly turbu-
lent.

The following example shows this.
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Example 2.2.18 : Let f : [0; 1]! [0; 1] be the piecewise linear map

de�ned by

f(0) = 0; f(
1

2
) = 1; f(1) = 0

Then if we take J = [0; 1
2
]; [1

2
; 1] then:

J [K � f(J) \ f(K)

but it is seen that J [ K � f(J) \ f(K) does not hold for any disjoint
compact subintervals J;K:

Lemma 2.2.19: If f is turbulent then there exist points a, b, c 2 I such
that:

f(b) = f(a) = a; f(c) = b

and either:

a < c < b

f(x) > a for a < x < b

x < f (x) < b for a < x < c

or:

b < c < a

f(x) < a for b < x < a
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b < f(x) < x for c < x < a:

Proof: Let J = [�; �] and K = [
; �]; where � � 
 be compact subinter-
vals such that:

J [ k � f(J) \ f(k):

If � = 
 we may assume that f(�) 6= �; since otherwise we can choose

J0 � J so that f(J0) = f(J) and J0 \K = �: Let a0 be least �xed point of f

in J and let b0 be the greatest point of k for which f(b0) = a0: Suppose �rst

that f(c0) = b0 for some c0 2 (a0; b0): Then we can take a to be the greatest
�xed point of f in [a0; c0); b to be the least point of (c0; b0] for which f(b) = a;

and c to be the least point of (a; c0] for which f(c) = b: Suppose next that

f(x) < b for a0 � x � b0: Then f takes the value � in the intervals [�; a0) and
(b; �]; and f(x) > x � � for � � x < a0: Thus f(a00) = a00 for some a00 2 (b0; �];
f(b00) = a00 for some b00 2 [�; a0]; and f(c00) = b00 for some c00 2 (a0; �]: Then,
as before, we can take a to be the least �xed point of f in (c00; a00]; b to be the

greatest point of [b00; c00) for which f(b) = a; and c to be the greatest point of

[c00; a) for which f(c) = b:�

Lemma 2.2.20: If f is turbulent, then f has periodic points of all

periods.

Proof : Let J;K be compact subintervals with at most one common point

such that J [ K � f(J) \ f(K) by lemma 2.2.19 we may assume that if
J and K are not disjoint then their common points is not periodic. Since

J � f(J); f has �xed point by lemma 2:2:3; for any given n > 1 there exist

a point x 2 J such that fn(x) = x and fk(x) 2 K for 0 < k < n: Evidently

x has period n:�

Lemma 2.2.21: If f has a periodic point of odd period n > 1, then f 2

is strictly turbulent and fm is also strictly turbulent for every m � n.
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Proof: We may suppose n chosen so that f does not have an orbit of

odd period strictly between 1 and n: Then by proposition 2.2.11 the orbit of

period n has the form:

fn�1(x) < fn�3(x) < ::: < f 2(x) < x < f(x) < ::: < fn�2(x);

or its mirror image. Without loss of generality, assume it has the form dis-

played. Choose d between x and f(x); so that f(d) = x and hence d < f 2(d):

Choose a between fn�1(x) and fn�3(x); so close to fn�1(x) that f 2(a) > d:

Choose b between a and fn�3(x); so close to fn�3(x) that f 2(b) < a; and

choose c between fn�3(x) and d; so close to fn�3(x) that f 2(c) < a: Then

J = [a; b]; K = [c; d] are disjoint and:

f 2(J) �
�
f 2(b); f2(a)

�
� [a; d];

f 2(K) �
�
f 2(c); f2(d)

�
� [a; d]:

Thus f 2 is strictly turbulent. Now choose e 2 (fn�1(x); fn�3(x)) so that
f(e) = d: If we set bJ = [fn�1(x); e] ; bH = [x; d]; then

fn( bJ) � �fn�1(x); fn�2(x)�
and

fn( bH) � fn�1[x; d] � �fn�1(x); fn�2(x)� :
Thus fn is strictly turbulent.

Moreover since

f
�
fn�1(x); fn�2(x)

�
�
�
fn�1(x); fn�2(x)

�
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fm is strictly turbulent for every m � n:�

Lemma 2.2.22: Suppose f is not turbulent let c 2 I and n > 1 :

If fn(c) � c < f(c); then f(x) > 8x 2 [fn(c); c]

If f(c) < c � fn(c) then f(x) < x8x 2 [c; fn(c)]:

Proof: Assume, on the contrary, that the interval [fn(c); c] contains a

�xed point of f; and let z be the greatest. Then f(x) > x for z < x � c: For
a unique integer m; (2 � m � n); we have

z < f j(c); 0 � j � m; fm(c) � z:

Then c < fm�1(c); since fm(c) � z < fm�1(c): If we had f j(c) < fm�1(c) <
f j+1(c) for some j; 0 � j � n�2; then J = [z; f j(c)] andK = [f j(c); fm�1(c)]

would satisfy

J [K � f(J) \ f(K);

which is contrary to hypothesis. Consequently f j(c) < fm�1(c) im-

plies f j+1(c) < fm�1(c): Since c < fm�1(c); this yields the contradiction

fm�1(c) < fm�1(c):�

We will say that a point x 2 I is a U � point if f(x) > x and a D� point
if f(x) < x:

Lemma 2.2.23: Suppose if f is not turbulent and let c 2 I: Then all
U � points in the orbit of c lie to the left of all D � points in its orbit. If
the orbit contains a �xed point, then it lies to the left of all D � points and
to the right of all U � points.
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Proof: If f j(c) � fk(c) < fk+1(c) for some j; k with j > k then f j(c) <
f j+1(c); by Lemma 2.2.22. Similarly if f j+1(c) < f j(c): It follows that any

U �points f j(c) lies to the left of any D�pointsfk(c); regardless of whether
k > j or k < j: If fh(c) is a �xed point then f i(c) = fh(c); 8 i > h and

argument applies.�

Theorem 2.2.24: Suppose that, for some c 2 I and some n > 1, fn(c) �
c < f(c).

If n is odd, then f has a periodic point of period q, for some odd q

satisfying 1 < q � n.
If n is even, then at least one of the following alternative holds:

(i) f has a periodic point of period q for some odd q satisfying 1 < q �
n
2
+ 1,

(ii) fk(c) < f j(c) 8 even k and all odd j with 0 � j; k � n.

Proof: If n = 2 then (ii) holds. We assume n > 2 and the theorem holds 8
smaller value of n (also when the inequalities for the points in the trajectory

of c are all reversed). We may assume also that f is not turbulent, since

otherwise f has periodic points of arbitrary period. Let xk = fk(c); k � 0:
Then xn is not a �xed point, by Lemma 2.2.23. Hence each point xk; 0 �
k � n is either a U�point or a D�point; and both types occur. Moreover, if
xi is the greatest U �point and xj the least D�point then xi < xj; again by
Lemma 2; 2; 23: Since xi+1 � xj and xj+1 � xi; the interval (xi; xj) contains
a �xed point of f: Let z be the least �xed point of f in this interval. Then

f(x) > x for xn � x < z; by Lemma 2.2.22. If n is odd, or if n is even and
(ii) does not hold, there is an h < n such that xh and xh+1 are both � xi
or both � xj: Evidently xh 6= xj; xi: Let J be the interval [xh; xi] if xh < xi
and the interval [xj; xh] if xh > xj: Also for k = 0; 1; 2; :::; n; k 6= h; let Jk
be the interval [xk; z] if xk � xi and the interval [z; xk] if xk � xj: Then it
is easily veri�ed that Jk+1 � f(Jk); 0 � k < n: Since J0 � Jn; there exists a
point y 2 J0 such that fn(y) = y; fk(y) 2 Jk; 1 � k < n; by Lemma 2.2.3.
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Then y has period m; where m divides n: Assume m = 1: Then y is a �xed

point and it belongs to the intersection of all Jk: But Jh and Ji have at most

the endpoint xi in common, and Jh and Jj have at most the endpoint xj
in common. Hence we must have 1 < m � n: If n is odd then m is also

odd, and thus the theorem is proved for this case. Suppose n is even. The

periodic point y is U � point; since y 2 [x0; z): If ys is the greatest U � point
and yt the least D � point in the orbit of y then ys < yt; by Lemma 2.2.23.
Moreover f(x) > x for y � x � ys; by Lemma 2.2.22; and hence z > ys: On
the other hand z < yt; since yt is a D� point: Since fh(y) and fh+1(y) lie on
the same side of z; by construction the alternative (ii) does not hold for the

orbit of y: Thus we are reduced to showing that if c itself is periodic with

even period n > 2 then either (i) or (ii) holds. Suppose �rst that n = 4: if

x3 < x0 < x1; or x0 < x1 < x2 or x0 < x3 < x2; then f has a periodic point

of period 3 by what we have already proved (with the inequality reversed in

the last case). Suppose next that n
2
is odd. For any k let k0 = k+ n

2
: Assume

that, for some k; xk0 and xk lie on the same side of z: If xk is closer than xk0

to z; then either xk0 < xk < xk+1 or xk0 > xk > xk+1: Hence f has a periodic

point of odd period q(1 < q � n
2
); by what we have already proved. If xk0 is

closer than xk to z the same conclusion holds, since xk = xk+n. Thus we may

assume that xk0 and xk are on opposite sides of z for every k: Without loss

of generality we may also assume that c is the greatest U �point in its orbit.
Then x1+n

2
< x0 < x1. Hence by induction hypothesis, f has a periodic

point of odd period q(1 < q � n
2
) unless x0; x1; :::; x1+n

2
are all less that z

and x1; x3; :::; xn
2
all greater. But then xn

2
; x2+n

2
; :::; xn�1 are all greater than

z and x1+n
2
; x3+n

2
; xn�2 are all less than z. Thus (ii) holds. Suppose �nally

that n
2
is even and n > 4: As in the previous case we may assume that xk

and xk0+1 are on opposite sides of z for every k: But then xk; xk+2 are on the

same sides of z for every k; and hence (ii) holds.�

A trajectory ffn(c)g will be said to be alternative if either fk(c) < f j(c)
for all even k and all odd j or fk(c) > f j(c) for all even k and all odd j:
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Theorem 2.2.25: If n is not a power of 2, the following statements are
equivalent:

(i) f has a periodic point of period n.

(ii) fn is strictly turbulent.

(iii) fn is turbulent.

Proof: Suppose �rst that n is odd. This implies n > 1; since n is not a

power of z; then (i) =) (ii); by Lemma 2.2.21; and (ii) =) (iii) is trivial.

It remain to show that (iii) =) (i): By Lemma 2.2.19 we assume that there

exist point a < c < b such that:

fn(c) = b; fn(b) = fn(a) = a:

If f(a) 6= a then f has a periodic point of period n, by Sarkovskii�s theorem.
Thus we may suppose that f(a) = a: If f(c) < c then f has aperiodic point of

period, by theorem 2.2.24 and sarkoviskiv�s theorem. Thus we may suppose

that f(c) > c. Since a = f 2n(c) < c and f(a) = a, it follows from Lemma

2.2.22 that f is turbulent. Hence f has periodic points of every period by

Lemma 2.2.20 . Suppose next that n = 2dq, q > 1 is odd and d � 1. Then
the equivalence of (i),(ii) and (iii) for f follows from their equivalence for

f 2d; by Lemma 2:2:13 and Sarkoviskii�s theorem. �

It is an immediate consequence of Theorem 2.2.25 and Lemma 2.2.20

that the following conditions are equivalent:

(i) f has a periodic point whose period is not a power of 2.

(ii) fm is strictly turbulent for some positive integer m.

(iii) f n is turbulent for some positive integer n.

De�nition 2.2.26: The map f will be said to be chaotic if one, and
hence all three, of the above conditions is satis�ed.

We will denote this de�nition by t-chaos.
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2.3 Lyapunove Chaos

The Lyapunove (or Liapunove ) exponents measure the exponential rate at

which nearby orbits are moving apart. In this section we give a precise

de�nition and calculate the exponents in two examples and give a de�nition

of chaos in sense of Liapunove:

De�nition 2.3.1: Let f : R ! R be a continuous and di¤erentiable map.

Then 8x 2 R we de�ne the liapunove exponent of x say �(x) as:

� (x) = lim
n!1

1

n

n�1P
i=0

log jf 0 (xi)j ; 8xi 2 R

De�nition 2.3.2:[14] Consider the continuous and di¤erentiable map
f : R! R then f is said to be chaotic according to liapunove or L�chaotic
if:

(i) f is topologically transitive,

(i) f has a positive liapunove exponent.

Remark 2.3.3: In a set of positive measure liapunove exponent can be
found from the relation:

�(x) =
R
log jf 0(x)j �(x)dx

where �(x) is the invariant measure ( if f is ergodic then �(x) is unique

[14]).

Remark 2.3.4: In higher dimensions, for example in Rn the map will
have n liapunove exponents, say: �1; �2; :::; �n for a system of n variables.

Then the map is L� chaotic if the maximum liapunove exponent is positive

i.e. max f�1; �2; :::; �ng > 0:

In [16] (pages 21-23) it is explained a way how to calculate this exponent.
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Proposition 2.3.5: Consider the continuous and di¤erentiable map f
:R! R. If f has a positive liapunove exponent then f has also sensitive de-

pendence on initial conditions.

Proof : See Proposition 2.1.16.

Proposition 2.3.6: Every expanding map f : R ! R has sensitive de-

pendence on initial conditions.

Proof: See Proposition2:1:17.

Example 2.3.7: Let F�(x) = �x(1 � x) for � � 2 +
p
5. Let be the

invariant cantor set. Then for x0 2 ��; log(jF 0(xj)j) � �0 > 0 for some �0:
Thus we may not know an exact value, but it is easy to drive an inequality

and know that the exponent is positive.[14]

2.4 Robinson�s Chaos

Clark Robinson in his book [14] de�ned the chaos same as devany�s de�nition

but without condition two in devaney�s de�nition i,e the map is chaotic if f

has topologically transitive and has sensitive dependence.

De�nition 2.4.1: A map f on a metric space X is said to be chaotic

on an invariant set Y if

(i) f is transitive on Y;

(ii) f has sensitive dependence on initial condition on Y .

We will denoted this de�nition by R� chaos:
The question now is: why Robinson left out condition two in devany�s

de�nition in his de�nition. The answer can be found in Remark 5.2 in chap-

ter"III" in his book.
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Remark 2.4.2: In remark 5.2 in Robinson book he wrote: " Devany�s
gave an explicit de�nition of a chaotic invariant set in an attempt to clarify

the notion of chaos. To our two assumptions, he adds the assumption that

the periodic points are dense in Y: Although this property is satis�ed by

"uniformly hyperbolic" maps like the quadratic maps, it does not seem that

this condition is at the heart of the idea that the system is chaotic. Therefore

we leave out condition about periodic points in our de�nition of chaos".

Example 2.4.3: Consider the continuous map f : X ! X de�ned by

f(ei�) = e2i� and X = s1n
n
e
2�pi
q : p; q 2 Z; q 6= 0

o
is a metric space equipped

with the arc length metricized.

We showed that this example in "example 2.1.5" is not D�chaotic but it
R� chaotic since the function f has sensitive dependence and topologically

transitive, but has no (dense) periodic points.

2.5 Wiggins�Chaos

Stephen Wiggins de�ned chaos as Robinson in his books like: Introduction to

Applied Nonlinear Dynamical systems and chaos [19] and chaotic transport in

dynamical system[17]. I added this de�nition because many authors de�ned

chaos in sense of Wiggins.

De�nition 2.5.1: "Wiggins�de�nition of chaos": Let f : X ! X be a

continuous map. Then the map f is said to be chaotic in sense of Wiggins

or W - chaotic if :

(1) f is topologically transitive,

(2) f exhibits sensitive dependence on initial condition.
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Example 2.5.2: In [9] it is proved that the quadratic map Q : [0; 1] !
[0; 1] given by

Q(x) = 4x(1� x)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x

y

Figure 2.5.1: The graph of Q (x)

is D-chaotic, R-chaotic and W-chaotic: We will use this result to in-

vestigate the chaotic behavior of the map G(�; �) = (4�(1 � �); � + 1) us-
ing the polar coordinates (�; �): The map G is de�ned on disk D(0; 1) =

fx 2 R2 : kxk � 1g : After a �nite number of iterations of the map G the

image of a small disk in D(0; 1) will contain an open set U � D(0; 1) with a
full radius. Also the rotation of 1 radian will spread U totally over D(0; 1)

after a �nite number of iterations. So G is transitive [20]. Now since the

quadratic map F is sensitive on [0; 1] then G is also sensitive. Finally G has

only a �xed point in the origin and does not have any periodic orbit of period

p > 1: Basically G shrinks or stretches the distance of every point of D(0; 1)

from the origin while rotating by angle of 1 radian. Since 1
�
is irrational, no

point xn that belong to the orbit of x0 can come back to the same ray which
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contains x0: Hence G has no dense periodic points. So G is W � chaotic but
not D � chaotic:

2.6 Touhey�s Chaos

The purpose of his article [12] is to introduce yet another de�nition of chaos.

Simply: a map f : X ! X is chaotic on X if every pair of non-empty open

subsets of X shares a periodic orbit. In the same article he shows that the

new de�nition of chaos is equivalent to the de�nition given by Devaney.

De�nition 2.6.1: Given a metric space X and continuous mapping f :X
! X, we say that f is transitive if for any two non-empty open subsets U and

V of X there exist u 2 U and a non-negative integer k such that f k(u) 2 V,
that is every pair of non-empty open subsets of X shares a forward orbit.

Although this is not the usual de�nition of topologically transitive but it

equivalence to it.

De�nition 2.6.2: Given a metric space X and continuous mapping

f:X ! X, we say that f is chaotic or T-Chaotic on X if given U and V ,

non-empty open subsets of X, there exists a periodic point p 2 U and non-
negative integer k such that fk(p) 2 V, that is every pair of non-empty open
subsets of X shares a periodic orbit.

Now we will show that this de�nition of chaos is equivalent to Devaney�s

de�nition of chaos .

Proposition 2.6.3[12] : f : X ! X is T � chaotic if and only if f is
D � chaotic.



40

Proof : (=))If f is T-chaotic on X then every pair of non-empty open

sets shares a periodic orbit. In particular, every non-empty open set must

contain a periodic point so the periodic points of f are dense in X: The

transitivity of f follows from the de�nition of T-chaos since every pair of

non-empty open sets shares a forward orbit.

((=)Now let f is D � chaotic: Given any pair of non-empty open sets
U; V � X transitivity ensures that there exists u 2 U and non-negative

integer k such that fk(u) 2 V: Now de�ne W = f�k(V ) \ U: Note that W
is open and non-empty since it is the intersection of two open sets and u is

an element of both of them. It is also clear that W has the property that

fk(W ) � V: But the periodic points of f are assumed to be dense in X; so
the non-empty open set W must contain a periodic point p. Thus we have

shown that there exists a periodic point p 2 W � U with the property that
fk(p) 2 fk(W ) � V:�

2.7 Experimentalists�Chaos

According to many non-mathematician, particularly physical scientists, a dy-

namical systems xn+1 = f(xn) is chaotic in an invariant set X if f has in

X sensitive dependence on initial conditions. Therefore, we may obtain very

di¤erent orbits from two almost identical starting points. It follows that the

evolution of the system is unpredictable, since it is practically impossible

to know the initial conditions exactly. This is obviously an important fea-

ture of the experimentalists�s chaos. An additional mevit is that sensitive

dependence on initial conditions can be checked numerically.[8]

De�nition 2.7.1: A map f : X ! X is experimentalist�s chaos or SD-

chaotic if f has in X sensitive dependence on initial conditions.
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However, despite the advantages, this de�nition of chaos is not satisfac-

tory. The following example illustrates some of the problems which may

arise.

Example2.7.2: Let D = fx 2 R2 : kxk � 2g : Using polar coordinates
de�ne F : D ! D by:

F (x) : F (�; �) = (�; � + �):

Notice that for every � 2 (0; 2] the set C� = fx 2 R2 : kxk = �g is invari-
ant and the dynamical system de�ned by F is a rotation in C�: Consequently,

it does not seem appropriate to label the system as chaotic in the invariant

set C�: However, the system has in C� sensitive dependence on initial condi-

tions with r0 = �: In fact, let x0 = (�0; �0) and d > 0: Choose n so large that
�
n
< d and �0 � 2�

n
> 0: Let y0 =

�
�0 � �

8
; �0
�
Then

kx0 � y0k < d

and:

xn = (�0; �0 + n�0);

y0 = (�0 �
�

2
; �0 + n�0 � �):

Consequently kxn � ynk > r0 and the system is chaotic is C� for every

� 2 (0; 2]: However, the system is non chaotic in the Disk D:We do not seem
to have a satisfactory situation.[8]

Remark 2.8.2: In [21] Gulick in his book de�ned chaos as sensitivity
sense.
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2.8 Knudsen�s Chaos

In his paper " Chaos without Nonperiodicity ", Carsten Knudsen proposed

a new de�nition of chaos. The aim of this paper is to prove that sensitive

dependence on the initial conditions and topological transitivity are stable

properties under closure, as well as under restriction to dense invariant sub-

sets. The consequence of the results is that chaos according to devaney may

exist on bounded but non compact spaces without any non-periodic orbits.

De�nition 2.8.1: Let f be a continuous transformation of a bounded
metric space X: If f has a dense orbit in X and f has sensitive dependence

on initial conditions, then f is said to be K � chaotic.

2.9 P-chaos

Let f be a continuous map from a compact metric space X to itself. The

map f is called to be P � chaotic if it has the pseudo-orbit-tracing property
and the closure of the set of all periodic points for f is equal to X: [22]

De�nition 2.9.1: A continuum is a nondegenrate compact connected

metric space.

De�nition 2.9.2: A continuos map f from a nondegenerate compact

metric space X to itself has the speci�cation property if for any " > 0 there

exists M 2 N such that for any K � 2; for any K points x1; x2; :::; xk 2 X,
for any nonnegative integers a1 � b1 < a2 � b2 < ::: < ak � bk with

ai � bi+1 � M for each i = 2; 3; :::; K and for any p � M + bk � a1; there
exists a points y 2 X such that fp(y) = y and d(fn(y); fn(xi)) � " for all
ai � n � bi; 1 � i � K:
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De�nition 2.9.3:
�Let f be a continuous map from a compact metric space X to itself.

A sequence of points fxi : i � 0g is called a � � pseudo � orbit for f if
d(f(xi); xi+1) < � for each i.

� A sequence fxi : i � 0g is said to be "�traced by x 2 X if d(f i(x); xi) <

" holds for each i � 0.
�A map f is said to have the pseudo� orbit� tracing � property if for

every " > 0 there exists � > 0 such that each � � pseudo � orbit for f is
"� traced by some point of X.

Theorem 2.9.4: Let f be continuous map from non-degenerate compact
metric space X to itself and has the speci�cation property then f is topologi-

cally mixing and the set of all periodic points for f is dense and f has positive

topological entropy.

Proof: See [29].(for the case X = I see the next chapter)

Theorem 2.9.5: Let f be continuous map from the unit interval to itself,
if f is topologically mixing, then f has the speci�cation property.

Proof: See [27] or [64].(see next chapter section 6)

Theorem 2.9.6: Let f : X ! X be a homeomorphism of compact metric

space. If f is topologically mixing, expansive, and has pseudo-orbit-tracing-

property then f has speci�cation property.

Proof: Let C > 0 be an expansive constant. For " with 0 < " < c
2
let

� > 0 be a number in the de�nition of pseudo� orbit� tracing � property:
Let U = fUig be a �nite open cover of X such that each Ui has the diameter

> �=2: Since f is topologically mixing for Uj; Ui 2 U there is Mj;i > 0 such

that for all n > Mi;j; f
n(Ui) \ Uj 6= �: Let M = max fMi;jg and take any

�nite points x1; x2; :::; xk 2 X and any integers
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a1 � b1 < a1 � b2 < ::: < akbk

satisfying

aj � bj�1 �M for 2 � j � K

and an integer

p �M + (bk � a1):

De�ne

ak+1 = bk+1 = p+ a1

xk+1 = f
a1�ak+1(x1):

For any z 2 X we denote as U 0(z) an open ball U 0 in U satisfying z 2 U:
Since aj+1 � bj �M; by topologically mixing we have:

U(faj+1(xj+1)) \ faj+1�bj(U 0(f bj(xj))) 6= �

form which there is yj 2 U 0(f bj(xj)) such that

faj+1�bj(yj) 2 U 0(faj+1(xj+1)):

De�ne a sequence fzig in X by:

zi = f
i(xj); aj � i � bj

z = f i�bj(yj); bj � i < aj+1
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zi + p = zi; i 2 Z:

Then fzig is a �� pseudo� orbit: Since f has pseudo� orbit� tracing�
property: There is x 2 X such that:

d(f i(x); xi) < " for all i 2 Z:

Since zi + p = zi for i 2 Z; we have d(f i+p(x); zi) < " for i 2 Z and so

d(f i � fp(x); f i(x)) < 2" < C:

By expansivity we have fp(x) = x; Therefore f has speci�cation.�

De�nition 2.9.7: A continuous map f from a compact metric space X

to itself is said to be P �chaotic if f has pseudo�orbit�tracing�property
and P (f) = X.

Example 2.9.8: Tent map is P �chaotic:We show that T which de�ned
by:

T (x) =

(
2x ; 0 � x � 1

2

2� 2x ; 1
2
< x � 1
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Figute 2.9.1: Tent map

has the pseudo � orbit � tracing � property: Let " > 0; n 2 N and let
fxi : i � 0g be a "=4� pseudo� orbit for f: Since

(B(xi+1"=2)) � (B(f(xi); "))

= f((B(x; "=2))) 6= �;

we have

f�1((B(xi+1; "=2))) \ (B(xi; "=2)):

Thus, there exists a point

x 2
nT
i=0

f�i((B(xi; "=2))) 6= �

and fxi; i � 0g is "� traced by x: Hence we see that f has the pseudo�
orbit � tracing � property: Since for each open set U there exists K such
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that

fk(U) = [0; 1];we have (p(f)) = [0; 1]:

Corollary 2.9.9: Let f be a P � chaotic map from a continuum (X; d)

to itself and " > 0. There exists M 2 N such that for each x; y 2 X and each

K �M , d(x; zk) < " and d(y; fk(zk)) < ", for some periodic point zk 2 X.

Proof: See Lemma 3.2 and corollary 3.3 in [22].

Corollary 2.9.10: Every P - chaotic map from a continuum to itself is

mixing.

Proof: Let f be a P � chaotic map from a continuum X to it self and

let U; V be non-empty open subset of X: There exist x 2 U; y 2 V and " > 0
such that B(x; ") � U and B(y; ") � V: By corollary 2,2.9, we have M 2 N
such that for each K � M; there exists zk 2 X such that d(x; zk) < " and

d(y; fk(zk)) < ":We see that fk(U)\V 6= � for all K �M; thus f is mixing.

Proposition 2.9.11: Let f be a continuous map from a compact metric

space X to it self. If f is P�chaotic then fk is P�chaotic for each K > 0.

Moreover if fk is P � chaotic for some K > 0, then f is P � chaotic.

Proof: See proposition 3.1 in [22].

2.10 Martelli�s Chaos

The next de�nition of chaos appears in Martellie�s book " An Introduction

To Discrete Dynamical System And Chaos"[18].
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De�nition 2.10.1: The orbit of a point x 2 X is said to be unstable

if there exists r > 0 such that for every " > 0 there are y 2 X and n � 1
satisfying the two inequalities

d(x; y) < "; d(fn(x); fn(y)) > r:

De�nition 2.10.2: The map f is chaotic in the sense of Martelli if there
exists x0 2 X such that:

[i] The orbit of x0 is dense in X:

[ii] The orbit of x0 is unstable.

Example 2.10.3: Let B(x) = 2x� [2x] =

8><>:
2x ; 0 � x < 1

2

2x� 1 ; 1
2
� x < 1

2x� 2 ; x = 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

y

Figure 2.10.1 : B (x) = 2x� [2x]

where [2x] denotes the greatest integer less that or equal to 2x: Notice

that B maps [0; 1] into itself and it is discontinuous at x = 0:5 and x = 1:
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The action of B and its iterates on the elements of [0; 1] is better understood

if we write them with their binary expansion. Then, for x 2 [0; 0:5) we have

x = 0:0a2a3:::;

while for x 2 [0:5; 1) we have

x = 0:1a2a3:::;

where ai; i = 2; 3; :::; are either 0 or 1: In both cases we obtain

B(x) = 0:a2a3::: :

Now can easily see that the orbit of

x0 = 0:0100011011000001010100:::

has the property O(x) = [0; 1]: Moreover O(x0) is unstable since B0(x) = 2

for x 6= 0; 1: Hence B(x) is chaotic in the sense of Martilli.

We will denote the chaos in the sense ofMartilli byM�chaotic function.

Theorem 2.10.4: (Theorem 4.1 in [8]) : Let X � Rq be closed and
bounded and F : X ! X be continuous. Then F is topologically transitive

in X if f there exists x0 2 X such that O(x0) = X:

Remark 2.10.5: We showed in example 1.2.16 that the above theorem
is not true over compact metric space, the space must be thick; and complete

metric space with a countable base: But it is still true over closed bounded

interval of R:

Theorem 2.10.6: Let x0 2 X be such that O(x0) = X and f : X ! X

be continuous. Then f has sensitive dependence on initial conditions if and

only if O(x0) is unstable with respect to X.
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Sketch of the proof: Sensitivity to initial conditions with respect to X

clearly implies that O(x0) is unstable with respect to X: Given y0 2 X and

d > 0; determine an iterate xn of x0 such that kxn � y0k � d=2: This can be
done since O(x0) = X: Next one shows that for every n > 1 the orbit O(xn)

has the same instability constant of O(x0); i.e. r(xn) = r(x0): It follows that

other some iterate yp of y0 is at least as far as r(x0)=3 from xn+p; or this

separation happens for some iterate zp of a point z0 which is closer than d to

both y0 and xn: In either case, we obtain that r(y0) � r(x0=3):

2.11 Block-Coppel�s Chaos

Now we return to "Dynamics In One Dimension" by Block and Coppel to

give a new de�nition of chaos in sense of them and we will denoted it by

BC � Chaos:

De�nition 2.11.1: A continuous map f : X! X on a compact metric

space X is called chaotic in the sense of block and Coppel or BC-Chaotic if

there exist an m 2 N and a compact fm� invarint subset Y of X such that

fmjY is semi-conjugate to the shift on
P
,i.e. if there exists a continuous

surjection h : Y !
P
satisfying:

h � fm = � � h on Y:

The next de�nition is equivalent to the above de�nition.[see 4] or [44].

De�nition 2.11.2: The map f : X ! X is chaotic in sense of block

and Coppel if there exist disjoint closed subsets X0; X1 of X and a positive

integer m such that, if ~X = X0 [X1 and g = fm then:

[i] g( ~X) � ~X;
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[ii] for every sequence � = (a0; a1; a2; :::) of 0�s and 1�s there exist a point

x = x� 2 ~X such that gk(x) 2 Xak for all k � 0:

Remark 2.11.3: If m = 1 in de�nition 2.11.1 then this notion of chaos

is also known as chaos in the sense of Coin Tossing [45].

Remark 2.11.4: Note every BC � chaotic map is chaotic in the sense
of Coin Tossing. The next example shows that.

Example 2.11.5: (example 2.2.5 in 46 ) Consider the subset
T =

f(0; a0; 0; a1; 0; :::)j(a0; a1; :::) 2
P
g

[

f(a0; 0; a1; 0; a2; :::)j(a0; a1; a2; :::) 2
P
g

of
P
: This set is � � invariant and the map �2jT is semi-conjugate to

� :
P
!
P
: However, there is no � � invariant subset W of T such that

�jW is semi-conjugate to � :
P
!
P
: For more details see example 2.2.5 in

[46].

Theorem 2.11.6: Let (X; d) be a compact metric space suppose f : X !
X is continuous then f is BC � chaotic if and only if fn is BC � chaotic:

Proof : Let f be BC-chaotic, m 2 N; Y � X compact and f � invariant
and let fmjY be semi conjugate to � via h : L !

P
: Then de�ning the

continuous surjection t :
P
!
P
by:

(a0; a1; a2; :::)! (a0; an; a2n; :::)

and h = t � h we get

h � (f) = � � h on Y
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and fn is BC � chaotic: The converse follows from thede�nition.�

2.12 Li-Yorke�s Chaos

We must remember that the use of the word chaos in Dynamical systems was

introduced by Li and Yorke[9]. In their paper Li and Yorke proved that for

a map on the real line which has a point with period three there exists an

uncountable scrambled set.

De�nition 2.12.1: A continuous map f : X ! X on a compact metric

space (X; d) is called chaotic in the sense of Li and Yorke or "LY -chaotic"

if there exists an uncountable subset S (called a scrambled set) of X with the

following properties:

[i] lim sup
n!1

d(fn(x); fn(x)) > 0, for all x; y 2 S; x 6= y:
[ii] lim inf

n!1
d(fn(x); fn(y)) = 0, for all x; y 2 S; x 6= y:

[iii] lim sup
n!1

d(fn(x); fn(p)) > 0; for all x 2 S; p 2 X where p is periodic.

Condition [iii] requires that for an orbit starting from a point in S does

not approach asymptotically any periodic orbit (two orbits fx; f(x); f2(x)g
and fy; f(y); f2(y)g approach asymptotically if lim

n!1
jfn(x)� fn(y)j = 0).

The second condition requires that two arbitrary orbits starting from two

di¤erent points in S can be close to each other but can not approach each

other asymptotically. In [9] they proved the following theorem.

Theorem 2.12.2: Let I be an interval and let f : I ! I be a continuous

map. If there exists a 2 I such that b = f(a); c = f 2(a) and d = f 3(a)

satisfying d � a < b < c (or d � a > b > c) then:
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[i] 8n = 1; 2; 3; ::: there exists a periodic point in I with period n.
[ii] There exists an uncountable scrambled set S � I with no periodic

points.

Proof of [i ]: Let K be a positive integer. For K > 1, let fIng be the
sequence of intervals In = L for n = 0; 1; :::; k � 2 and In+k = H; and de�ne
In to be periodic inductively, In+k = In for n = 0; 1; 2; :::: If k = 1; let In = L

for all n: Let Qn be the sets in the proof of lemma 2.2 .2: Then notice that

Qk � Q0 and fk(Qk) = Q0 and so by lemma 2:2:1. G = fk has a �xed point
pk in Qk: It is clear that pk cannot have period less than k for f , other wise

we would need to have fk�1(pk) = b; contrary to fk+1(pk) 2 L: The point p
is a periodic point of period k for f:

Proof of [ii]: Let � be the set of sequences M = fMng1n=1 of intervals
with

Mn = H or Mn � L; and F (Mn) �Mn+1 (12:1)

if Mn = H then

n is the square of an integer and Mn+1;Mn+2 � L (12:2)

where H = [a; b] and L = [b; c]. Of course if n is the square of an integer,

then n+ 1 and n+ 2 are not, so the last requirement in (12.2) is redundant.

For M 2 �; let p(M;n) denote the number of i�s in f1; :::; ng for which
Mi = H: For each r 2 (3=4; 1) choose Mr = fM r

ng
1
n=1 to be a sequences in �

such that

lim
n!1

p(M r; n2)=n = r (12:3)

Let

�0 = fM r : r 2 (3=4; 1)g �M:
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Then �0 is uncountable since M
r1 6= M r2 for r1 6= r2: For each M r 2 �0;

by Lemma 2.2.2 there exists a point xr with fn(xr) 2 M r
n for all n: Let

S = fxr : r 2 (3=4; 1)g : Then S is also uncountable. For x 2 S; Let P (x; n)
denote the number of i�s in f1; :::; ng for which F i(x) 2 H: We can never
have f �(xr) = b; because then xr would eventually have period 3, a contrary

to (12.2).

Consequently

p(xr; n) = P (M
r; n) for all n

and so

d(xr) = lim
n!1

P (Xr; n
2) = r for all r:

We claim that for p; q 2 S; which p = q; there exist in�nitely many n�s
such that fn(p) 2 H and fn(q) 2 L or vice verca. We may assume that
d(p) > d(q); then

P (p; n)� P (q; n)!1

and so must be in�nitely many n�s such that fn(p) 2 H and fn(q) 2 L:
Since f 2(b) = d � a and f 2 is continuous, there exist � > 0 such that

f 2(x) < (b+ d)=2 for all x 2 [b� �; b] � H:

If p 2 S and fn(p) 2 H; then (12.2) implies fn+2(p) 2 L and fn+2(p) 2 L:
Therefore

fn(p) < b� �:

If fn(q) 2 L then fn+2(q) � b so jfn(p)� fn(q)j > �: For any p; q 2 S;
p 6= q; it follows
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lim sup
n!1

jfn(p)� fn(q)j � � > 0:

This proves part of Li -York theorem (part [i] of the de�nition of chaos in

the sense of Li and York). To prove [ii] in LY - chaos. Since f(b) = c; f(c) =

d � a; we may choose intervals [bn; cn]; n = 0; 1; 2; :::; such that
(a) [b; c] = [b0; c0] � [b1; c1] � ::: � [bn; cn] � :::;
(b) f(x) 2 (bn; cn) for all x 2 (bn+1; cn+1) ;
(c) f(bn+1) = cn ; f(cn+1) = bn:

Let

A =
1T
n=0

[bn; cn]; b� = infA; c� = supA;

then f(b�) = c� and f(c�) = b� because of (12.2). We must be more

speci�c in our choice of the sequences M r. In addition to our previous re-

quirements on M 2 �; we will assume that if Mk = H for both k = n2 and

(n+ 1)2 then

Mk = [b
2n�(2j�1)b�] for k = n2 + (2j � 1);

Mk = [c
�; c2n�2j] for K = n2 + 2j where j = 1; ::; n:

For the remaining k�s which are not square of integers, we assumeMk = L.

It easy to check that these requirements are consisted with (12.12.2) and (1),

and that we can still chooseM r so as to satisfy (12.3). From the fact that d(x)

may be thought of as the limit of the fraction of n�s for which fn
2
(x) 2 H; it

follows that for any r�; r 2 (3=4; 1) there exist in�nitely many n such that

M r
k =M

r�

k = H for both k = n2 and (n+ 1)2

Let xr 2 S and xr� 2 S: Since bn ! b�; cn ! c� as n!1; for any " > 0
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there exists N with

jbn � b�j < "

2
; jcn � c�j < "

2
for all n > N:

Then for any n with n > N and M r
k = M

r�
k = H for both K = n2 and

(n+ 1)2 we have

fn
2+1(x) 2M r

k = [b
2n�1; b�] with k = n2 + 1

and fn
2+1(xr) and fn

2+1(xr�) both be long to [b2n�1; b�]: Therefore���fn2+1(xr)� fn2+1(xr�)��� < ":
Since there are in�nitely many n with this property,

lim inf
n!1

jfn(xr�)� fn(x)j = 0:�

Remark 2.12.3: Condition [iii] in the de�nition of LY -chaos is redun-
dant can be seen as follows. Two approximately periodic points x; y can not

satisfy both [i] and [ii] in the de�nition of a scrambled set. Consequently

there exists at most one approximately periodic point in any set satisfying

condition [i] and [ii] of this de�nition. Removing this point new set also sat-

is�es [iii] [44]. However see the next lemma that found in [4]: V I lemma

28:

Lemma 2.12.4: If x and y are approximately periodic then either

lim
n!1

d(fn(x); fn(y)) = 0

or

lim inf
n!1

d(fn(x); fn(y)) > 0:
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Proof: Assume to the contrary that

lim inf
n!1

d(fn(x); fn(y)) = 0;

lim sup
n!1

d(fn(x); fn(y)) = � > 0;

Choose " so that 0 < " < �=5: There exist periodic points z and w and

positive integer N such that, for all n � N;

d(fn(x); fn(z)) < ";

d (fn (y) ; fn (w)) < ":

Let m be the least common multiple of the periodic of z and w; and

choose � > 0 so small that d(x1; x2) < � for any x1; x2 implies that

d(fk(x1); f
k(x2)) < ":

For some p � N we have d (fp (x) ; fp (y)) < � and hence

d(fp+k(x); fp+k(y)) < " for k = 1; :::;m:

It follows that

d(fp+k(z); fn+k(w)) < 3"; k = 1; :::;m:

Thus

d(fn(z); fn(w)) < 3" for all n � 0:

Hence for all n � N;

d(fn(x); fn(y)) < 5" < �
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which is a contradiction.�

The last lemma showes that a scrambled set contains at most one ap-

proximately periodic point.

Remark 2.12.5: Li-Yorke�s chaos has two disadvantages. The �rst is
that it can only be used on intervals on the real line and not in higher

dimensional spaces. For example the rotation on R2 of 120� has a periodic

point with period three but it does not have an uncountable scrambled set.

The second disadvantage is that it cannot be applied to maps even with one

discontinuity since discontinuity is critical to LY � chaos:

Proposition 2.12.6: Let f : X ! X be continuous. Then for any

n 2 N the map f is LY � chaotic if and only if fn is LY � chaotic:

Proof: The set S � X is a scrambled set with respect to f is and only if

it is a scrambled set with respect to fn. �

Example 2.12.7: Consider the map f : [�1; 1]! [�1; 1] given by f(x) =
2 jxj � 1

­1.0 ­0.8 ­0.6 ­0.4 ­0.2 0.2 0.4 0.6 0.8 1.0

­1.0

­0.8

­0.6

­0.4

­0.2

0.2

0.4

0.6

0.8

1.0

x

y
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Figure 2.12.1: f (x) = 2 jxj � 1

Now we can observe that f(�7
9
) = 5

9
; f(5

9
) = 1

9
and f(1

9
) = �7

9
so f has a

periodic point of period 3 and f is LY � chaotic [18]:

Example 2.12.8: Consider the map L : [0; 1]! [0; 1] be given by

L (x) =

8><>:
x+ 1

3
; 0 � x � 2

3

1� 7
�
x� 2

3

�
; 2

3
� x � 2

3
+ 1

8

x� 2
3

; 2
3
+ 1

8
� x � 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

y

Figure 2.12.2: the graph of L (x)

Choosing the interval I = [1
8
; 1
3
] we can see that it is transported to the

interval J = [1
3
+ 1

8
; 2
3
]: Continuing in the same way J is transported to

K = [2
3
+ 1

8
; 1] and �nally K to I: So because of this all points in these

intervals are period three points, hence the hypothesis of the de�nition is
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satis�ed and there exists an uncountable scrambled set, hence it exhibits

Li� Y ork � chaos:

Example 2.12.9: The generalized logistic map f(x) = ax(1 � x
b
) with

a 2 (3:84; 4) and f(x) = max
�
ax(1� x

b
); 0
	
for a > 4 both de�ned in the

interval I = [0; k] is LY -chaotic. The analysis of this example can be found

in [9].

Example 2.12.10: Consider the map fa : [0; 1)! [01) given by fa(x) =

frac(x � a); where frac(x) denotes the fractional part of x and a is an
irrational number. First we choose two arbitrary points x and y in [0; 1) such

that x < y:

Then we have

jfna (x)� fna (y)j = jfna (x)� fna (y)j =
(
1� jx� yj ; x < frac (na)
jx� yj ; otherwise

so from these we have:

lim inf
n!1

jfna (x)� fna (y)j = min fjx� yj ; 1� jx� yjg > 0

and from these their can not exist an uncountable scrambled set, so the

map is not LY � chaotic:

2.13 Topological Entropy

The notion of topological entropy, introduced by Adleretal, [47] provides

a numerical measure for the complexity of an endomorphism of a compact
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topological space. We intend to consider here some results which hold for the

special case of a compact interval in particular a theorem of Misiurewicz [48],

which implies that a continuous map is chaotic if and only if its topological

entropy is positive. However, this is the introduction given by Block and

Coppel in chapter V III in their book. We follow topically them with some

changes.[4]

Let X be a compact topological space. An open cover � of X is a

collection of open sets whose union is X: An open cover � is said to be a

re�nement of an open cover �, in symbols � < �; if every open set of � is

contained in some open set of �:We say that � is a subcover of � if every open

set of � actually is an open set of �: If � and � are two open covers, their

join � _ � is the open cover consisting of all sets A \ B with A 2 �;B 2 �:
Thus �[ � is a re�nement of both � and �: Since X is compact, every open

cover has a �nite subcover. The entropy of an open cover � is de�ned to

be H(�) = logN(�); where N(�) is the minimum number of open sets in

any �nite subcover. Evidently H(�) � 0; with equality if and only if x 2 �:
Moreover it is easily seen that:

[i] if � < �; then H(�) � H(�) and H(� _ �) = H(�);
[ii] H(� _ �) � H(�) +H(�);
[iii] if � < �; then f�1� < f�1�;

[iv] f�1(� _ �) = f�1� _ f�1�;
[v] H(f�1�) � H(�); with equality if f is surjective.
From [iv]; [ii]; [v] we obtain for any positive integers m;n

H(� _ ::: _ f�m�n+1�) = H(� _ ::: _ f�m+1� _ f�m(� _ ::: _ f�n+1�))
� H(�_ :::_ f�m+1�) +H(f�m(�_ :::_ f�n+1�))
� H(� _ ::: _ f�m+1�) +H(� _ ::: _ f�n+1�):

h(f; a) = lim
n!1

H(�_ :::_ f�m+1�_ f�m(�_ :::_ f�n+1�):

Lemma 2.13.1: Let an be a sequence of real numbers which is sub
additive, i.e.
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am+n � am + an for all m;n

Then lim
n!1

an
n
exists and has value C = inf an

n
:

Proof: For any �xed m set n = qm + r; where q; r nonnegative integers

and r < m: It follows from the subadditivity that an � qam + ar; If n!1
for a �xed m then q

n
! 1

m
and takes �nitely many values. Hence

lim sup
n!1

an
n
� am
m
:

Since this holds for arbitrary m we have lim sup
n!1

an
n
� C But an

n
� C for

every n; we also have C � lim inf
n!1

an
n
: The result follows.�

The limit h(f; �) is called the entropy of f relative to the cover �:

[vi] if � < �; the h(f; �) � h(f; �):

[vii] if f is a homeomorphism, then h(f�1; �) = h(f; �); since

H(� _ ::: _ f�n+1�) = H(fn�1(� _ ::: _ f�n+1�));

= H(� _ f� _ ::: _ fn�1�);

= H(� _ (f�1)�1� _ ::: _ (f�1)�n+1�):

The topological entropy of a continuous map f : X ! X is de�ned to be

h(f) = sup�h(f; �); where the supremum is taken over all open covers �:

Proposition 2.13.2: If f : X ! X is a continuous map then for any

positive integer k, h(fk) = kh(f):

Proof: For any open cover we have
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h(fk) � h(fk; � _ f�1� _ ::: _ f�k+1�)

= lim
n!1

kH(� _ f�1� _ ::: _ f�k+1� _ ::: _ f�nk+1�)
nk

= kh(f; �)

Hence h(fk) � kh(f): On the other hand, since

� _ (fk)�1� _ ::: _ (fk)�n+1� < � _ f�1 _ ::: _ f�nk+1�

We have

h(f; �) = lim
n!1

H(� _ f�1� _ ::: _ f�nk+1�)
nk

� lim
n!1

H(� _ (fk)�1� _ ::: _ (fk)�n+1�)
nk

= h
(fk; a)

k

Hence h(fk) � kh(f): �

Proposition 2.13.3: If f : X ! X is a homeomorphism, then h(f�1) =

h(f):

Proof: This follows at once from [vii]. �

Proposition 2.13.4: Let X; Y be compact topological spaces and let

f : X ! X; g : Y ! Y be continuous maps. If there exists a continuous

maps � : X ! Y such that �(X) = Y and the diagram:
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X f���������������! X

�

??????y
??????y �

Y ��������������!g Y

commutes, then h(g) �h(f). Moreover, if � is a homeomorphism, then
h(g) = h(f):

Proof : If � is any open cover of Y then, since � is surjective, ��1� is an

open cover of X: Moreover, since � � fk = gk � �;

h(g; �) = lim
H(� _ g�1 _ ::: _ g�n+1�)

n

= lim
H(��1(� _ g�1� _ ::: _ g�n+1�))

n

= lim
H(��1(� _ ��1g�1� _ ::: _ ��1g�n+1�)

n

= lim
H(��1� _ f�1��1� _ ::: _ f�n+1��1�)

n

= h(f; ��1�):

Hence h(g) � h(f): If � is a homeomorphism then ��1 � g = f � ��1 and
hence h(f) � h(g):�

We consider �rst some ways of estimating the topological entropy h(f) of

a continuous map f : I ! I:

Proposition 2.13.5: Let f : I ! I be a continuous map. If there exist

disjoint closed intervals J1; :::; Jp such that
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Ji [ ::: [ Jp � f(Ji) (i = 1; :::; p)

then h(f) � log p:

Proof: We can choose pairwise disjoint open intervals G1; :::; Gp with

Ji � Gi for i = 1; :::; p: By adjoining further open intervals Gp+1; :::; Gq;

satisfying Gi \ Jk = � for p + 1 � i � q and 1 � k � p; we obtain a �nite
open cover �: For any positive integer n and any ik with 1 � ik � p the set

Ji1...in =
�
x : x 2 Ji1 ; f(x) 2 Ji2 ; :::; fn�1(x) 2 Jin

	
is non empty. Each point in this set containes a unique element of

� _ f�1� _ ::: _ f�n+1�

namely

Gi1 \ f�1(Gi2) \ ::: \ f�n+1(Gin):

It follows that

H(� _ f�1 _ ::: _ f�n+1�) � n log p:

Hence h(f; �) � log p and, a fortiori, h(f) � log p: �

The proof of the following lemmas (2.13.6 , 2.13.7 , 2.13.8) can be found

in [49].

Lemma 2.13.6: Let A = (aik) be a p � p matrix of non-negative real
numbers. Then there exist � � 0 and a non-zero vector x = (xk) with xk � 0
(k = 1; :::; p) such that Ax = �x and j�j � � for every other eigenvalue � of
A.[49]
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We will refer to � as the maximal eigenvalue of A: A non-negative matrix

A is said to be reducible if there exists a permutaion matrix P such that:

P tAP =

"
B 0

C D

#
where B and D are square matrices of smaller size, and irreducible oth-

erwise.

Lemma 2.13.7: For any non-negative matrix A there exists a permu-

taion matrix P such that :

P tAP =

266664
A11 0 ::: 0

A21 A22 ::: 0

::: :::

Ar1 Ar2 ::: Arr

377775
where each diagonal block Akk (k = 1; :::; r) is irreducible.[49]

Lemma 2.13.8: Let A be a non-negative matrix with maximal eigenvalue
�. If A is irreducible, then there exists a positive integer h such that the

eigenvalues of A with absolute value � are :

�; �!; :::; �!h�1

where ! = exp(2�i=h): [49]

We de�ne the norm of a real or complex matrix A = (aik) to be

jAj =
P

i;k jaikj :

The maximal eigenvalue is related to the norm in the following way.

Lemma 2.13.9: Let A be a non-negative matrix with maximal eigenvalue
�. Then
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� = lim
n!1

jAnj
1
n

Proof: Let x = (xk) be the non-negative eigenvector corresponding to the

eigenvalue �; so that:

�xi =
P

k aikxk

If we choose i so that xi = max xk we obtain

� �
P

k aik � jAj :

Applying this inequality to An; instead of A; we obtain �n � jAnj and
hence

� � lim inf
n!1

jAnj
1
n

Let T be a non-singular matrix such that J = T�1AT is in Jordan normal

form. If � > � then

Jn=�n ! 0 as n!1

and hence also An=�n ! 0: Thus jAnj < �n for all large n and

lim sup
n!1

jAnj
1
n � �:

Since this holds for any � > �; the result follows. �

Lemma 2.13.10: Let A be a non-negative matrix with maximal eigen-

value �: Then

� = lim sup
n!1

(tr An)
1
n

Proof : If A is p� p matrix then trAn � p�n and hence
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lim sup
n!1

(tr An)
1
n � �:

It remains to prove the reverse inequality.

Suppose �rst that A is irreducible. Then by lemma 2.13.8, the eigenvalue

of A with absolute value � are

�; �!; :::; �!h�1

where ! = exp(2�i=h): If we denote the remaining eigenvalues of A by

�h+1; :::; �p then

trAn = �n + �n!n + :::+ �n!(h�1)n + �nh+1 + :::+ �
n
p :

In particular if we take n = kh to be a multiple of h then !n = 1 and

(trAn)
1
n = �

�
h+

Pp
i=h+1 (�i=�)

n� 1n
! � as k !1:

In the general case we appeal to Lemma10. For some k the irreducible

diagonal block Akk has maximal eigenvalue since

trAn � tr(Akk)n:

It follows from what we have just proved that

lim sup (trAn)
1
n � �:�

Proposition 2.13.11: Let f : I ! I be a continuous map. Let J1; :::; Jp
be closed intervals with pairwise disjoint interiors and let A = (aik) be the

p � p matrix de�ned by aik = 1 if Jk � f(Ji); aik = 0 otherwise. Then

h(f) � log �, where � is the maximal eigenvalue of A:
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Proof: Evidently we may suppose that � > 1: By lemma 2:13:10 we have

log� = lim sup[log tr(An)]=n:

since

maxi(A
n)ii � tr(An) � pmax

i
(An)ii:

It follows that for some i(1 � i � p);

log� = lim[log(An)ii]=n:

Thus for any � with 1 < � < � there exist arbitrarily large n such that

there are more than �n paths of length n from Ji back to Ji. Evidently

Ji must have non-empty interior. Hence there exist more than �n closed

intervals Kj with pairwise disjoint interiors such that

Kj � Ji; fn(Kj) = Ji:

By omitting the two intervals Kj which are furthest to the left and to

the right and slightly shrinking the remaining intervals. We obtain at least

[�n]� 1 disjoint closed intervals Lj such that

[iLi � intfn(Lm) for every m:

Hence, by Propositions 2.13.2 and 2.13.5

h(f) = h(fn)=n � [log(�n � 2)]=n

= log �+ [log(1� 2=�n)]=n

Since n can be arbitrarily large, it follows that h(f) � log �: Since this
holds for any � < �; it follows that h(f) � log �:�
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Corollary 2.13.12: Let f : I ! I be a continuous map. If f is turbu-

lent, then h(f) � log 2: �

Proposition 2.13.13: Let f : I ! I be a continuous map. For any open

cover �, there exists a cover � consisting of �nitely many disjoint intervals

such that

h(f; �) � h�(f; �):

Conversely, for any cover � consisting of �nitely many disjoint intervals

there exists an open cover � such that

h�(f; �) � h(f; �) + log3:

Proof: Let � be any open cover. We may suppose that � is the union

of �nitely many open intervals, since replacing � by a re�nement does not

decrease the entropy of f relative to the cover. Let � be a cover consisting of

�nitely many disjoint intervals such that each interval A 2 � is contained in
some open interval B 2 �: For any chain fA1; :::; Ang in �n pick some Bk 2 �
such that

Ak � Bk (1 � K � n):

Since the collection of all open sets

B1 \ f�1(B2) \ ::: \ f�n+1(Bn)

obtained in this way covers I; it follows that

H(� _ f�1 _ � _ ::: _ f�n+1B) � logCn(�):

and hence
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h(f; �) � h�(f; �):

Now let � be any cover consisting of �nitely many disjoint intervals. Let

� be a �nite open cover of I; consisting of the interior of the intervals in

� together with small open intervals surrounding the end points of these

intervals, chosen so that every open interval in � is contained in the union of

at most there intervals in � (three intervals being needed if an interval in �

contains only one point). Let �n denote a subcover of �_f�1�_ :::_f�n+1�
of minimum cardinality. For any chain fA1; :::; Ang in �n there exists a point
x with f j�1(x) 2 Aj for j = 1; :::; n: Then x belongs to some element of

B1 \ f�1(B2) \ ::: \ f�n+1(Bn):

Evidently

An \Bn 6= � (1 � K � n):

Since the number of di¤erent chains fA1; :::; Ang which correspond in this
way to the same sequence fB1; :::; Bng is at most 3, it follows that

logCn(�) � H(� _ f�1� _ ::: _ f�n+1�) + n log 3

and hence

h�(f; �) � h(f; �) + log3:�

Lemma 2.13.14: If fang and fbng are sequences of positive numbers,
then

lim sup
n!1

[log(an + bn)]=n = max

�
lim sup
n!1

(log an)=n; lim sup
n!1

(log bn)=n

�
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Proof: Let � and � denote the left and right sides of equality to be proved.

Evidently � � �. On the other hand, for any � > � there exists an integer p
such that

an < e
n�; bn < e

n� for all n � p

It follows that

[log(an + bn)]=n < � + (log2)=n for n � p;

and hence � � �. Since this holds for any � � �, we must actually have
� � �:�

Lemma 2.13.15: Let f : I ! I be a continuous map. If J;K are

intervals such that f(J) \K 6= �, then there exists an interval L � J such
that

f(L) = f(J) \K:

Proof: Evidently � = f(J)\K is an interval. Since the result is obvious

if � contains only a single point we may suppose that � = [a; b]; where a < b:

Choose c; d 2 J , and if possible c; d 2 J , so that

f(c) = a; f(d) = b:

If c < d; let c0 be the greatest value greater than c and less than d such

that f (c0) = a and let d0 be the least value greater than c0 such that f(d0) = b:

Then we can take L to be an appropriate (closed, open,or half open) interval

with endpoints c0 and d0: If c > d the proof is analogous.�

Let � be a collection of �nitely many disjoint intervals and let 
 be the

collection of those intervals A 2 � for which lim supn!1 [log cn (�jA)] =n =
h� (f; �). We now de�ne inductively a sequence f�ng where each �n is a �nite
collection of disjoint intervals in the following way :
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(i) �1 = 
;

(ii) if �n is de�ned then for each interval D 2 �n and each interval A 2 

with fn (D)\ 6= � we choose by lemma 2.13.15 an interval E (D;A) such

that E (D;A) � D; fn (E (D;A)) = fn(D) \ A:
The intervals E (D;A) are necessarily disjoint and we take �n+1 to be the

collection of all such intervals. By induction we see that if fA1; :::; Ang is a
chain in 
n then there exists a unique Dn 2 �n such that

Dn � A1; f (Dn) � A2; :::; fn�2 (Dn) � An�1; fn�1 (Dn) � An:

Then

fn�1 (Dn) = fyn 2 An : 9 y1; :::; yn�1, yi 2 Ai, f (yi) = yi+1, i = 1; ::; n� 1g

Conversely, each interval Dn 2 �n is contained in a unique interval Dk 2
�k (1 � k < n) and there is a unique interval Ak 2 
 such that fk�1 (Dn) �
Ak (1 < k � n) : SinceD1 = A1 2 �1; it follows that fk�1 (Dn) � Ak (1 � k � n) :
Then fA1; :::; Ang is a chain in 
n: Consequently the number of intervals in
�n is exactly cn (
) ; and the number of intervals in �n which are contained

in an interval A 2 
 is cn (
jA) :
For anyA;B 2 
 let g (A;B; n) denote the number of intervalD 2 �n such

that D � A; fn (D) � B: This notion and de�nition of �; 
 are understood
in the statements of the next two results.

Proposition 2.13.16: For any A;B;C 2 
 and any positive integers
m;n

g(A;B;m)g(B;C; n) � g(A;C;m+ n):

Proof: Let D be an interval in m such that D � A and fm(D) � B;
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and let E be an interval in �n such that E � B and fn(E) � C: Then there
exists a chain fA1; :::; Amg in 
mjA such that fk�1(D) � Ak(1 � K � m);
and a chain fB1; :::; Bng in 
njB such that fk�1(E) � Bk(1 � K � n): Hence
fA1; :::; Am; B1; :::; Bng is a chain in 
m+njA and there exists D0 2 �m+n such
that

fk�1(D0) � Ak(1 � K � m); fm+k�1(D0) � Bk(1 � K � n)

Moreover D0 � D, since D0 is contained in a unique interval of �m and D

is the interval of �m with the itinerary fA1; :::; Amg : Since

fm(D) � E; fk�1(D) � Ak(1 � K � m)

and

fn(E) � C; fk�1(E) � Bk(1 � K � n):

It follows that for every ym+n+1 2 C there are points yi with yi 2 Ai for
i = 1; :::;m and yi 2 Bi�m for i = m + 1; :::;m + n and f(yi) = yi+1 for

i = 1; :::;m + n: Thus fm+n(D0) � C. Since D0 is the only interval of �m+n
with the itinerary fA1; :::; Am; B1; :::; Bng ; the result follows. �

Proposition 2.13.17: If h�(f; �) > log3, then there exists A 2 
 such
that

lim sup
n!1

[log g(A;A; n)]=n = h�(f; �):

Proof: Choose any A 2 
 and let � be a real number such that log3 <
� < h�(f; �): We will show �rst that the following condition is satis�ed:

[#] For every p there exists an integer n � p such that:

cn+1 (
jA) =3 � cn (
jA) > en�:
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Assume on the contrary that there exists p such that, for n � p

[log cn (
jA)] =n > � implies cn+1 (
jA) < 3cn (
jA) :

If for some q � p we have log log cn (
jA) > �n for all n � q then

cn+q (
jA) < 3ncq (
jA) for all n � 1 and hence

lim sup
n!1

[log cn (
jA)] =n � log 3

which is a contradiction. Therefore (1/N) log cN (
jA) � �; for in�nitely
many positive integers N: Suppose that for such an N we have

� < [log cn (
jA)] =n for n = N + 1; :::; N + r

where r � 1: Since in general cn+1 (
jA) � s cn (
jA) ; where s is the
number of intervals in 
 it follows that

cN+r (
jA) < s:3r�1cN (
jA) :

Taking logarithms, we obtain

(N + r)� < log s+ (r � 1) log 3 +N�;

i.e.

r(�� log 3) < log s� log 3:

Thus r � t; for some positive integer t independent of N: It follows that

cn (
jA) < s:3t�1en�

for all large n; and hence

lim sup
n!1

[log cn (
jA)] =n � �;
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which is again a contradiction. This establishes [#]: Now �x D 2 �n
with D � A: By the de�nition of �n+1; the number q of intervals in �n+1
which are contained in D is equal to the number of intervals C 2 
 such that
fn(D) \ C 6= �: Since fn(D) is an interval, at most two intervals of 
 have
non-empty intersection with fn(D) but are not contained in it. Hence the

number of intervals B 2 
 such that fn(D) � B is at least q � 2: Summing
over all D 2 �n with D � A; we obtain

P
B2
 g(A;B; n) � cn+1(
jA)� 2cn (
jA) :

Combining this with [#], we see that for in�nitely many n we have

P
B2
 g(A;B; n) � cn (
jA) > en�

Hence, since � < h�(f; �) is arbitrary,

lim sup
n!1

h
log
P

B2
 g (A;B; n)
i
=n � h� (f; �) :

It follows from lemma 14 that for each A 2 
 there exists B = '(A) 2 

such that

lim sup
n!1

[log g(A;'(A); n)]=n � h�(f; �):

Since 
 is �nite, the map ' : 
 ! 
 has a periodic point A0: Let m be its

period. By repeated application of Proposition 16 we obtain, for any positive

integers ni (0 � i < m),

g
�
A0; A0;

Pm�1
i=0 ni

�
�
Qm�1
i=0 g

�
'i (A0) ; '

i+1 (A0) ; ni
�
:

But for any � < h�(f; �) we can choose arbitrarily large ni; so that

log g
�
'i (A0) ; '

i+1 (A0) ; ni
�
� �ni:
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Then, putting n =
P
ni; we have

log g(A0; A0; n) � �n

Thus

lim sup
n!1

[log g(A0; A0; n)]=n � h�(f; �):

since g(A0; A0; n) � cn (
) � cn (�) the reverse inequality is obvious. �

Theorem 2.13.18: Let f : I ! I be a continuous map. If f has

topological entropy h(f) > 0 then for any � with 0 < � < h(f) and any

N > 0, there exist pairwise disjoint closed intervals J1; :::; Jp and an integer

n > N such that (1=n) log p > � and

J1 [ ::: [ Jp � int fn(Ji) (i = 1; :::; p):

Proof: Suppose �rst that h(f) < +1: Choose " > 0, so small that

h(f) > � + 2" and let r be a positive integer such rh(f) > " + log3: There

exists a �nite open cover � of I such that

h(f r; �) � h(f r)� ":

By Proposition2.13.13, there exists a cover consisting of �nitely many

disjoint intervals such that

h�(f r; �) � h(f r; �):

Hence

h�(f r; �) � rh(f)� " > log3:
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By proposition 2.13.17, applied to f r and �: There exists an interval A

2 � and arbitrarily large integers m such that

[log g(A;A;m)]=m � h�(f r; �)� " � rh(f)� 2":

Thus if we put n = mr there exist Pn disjoint intervals Di such that

Di � A and fn(Di) � A; where

(logPn)=n � h(f)� 2"=r > �:

Since Pn ! 1 as n ! 1, the intervals A has non-empty interior and

so have the intervals Di: If we omit the two intervals which are furthest to

the left and to the right and replace the remaining intervals Di by slightly

smaller closed intervals Ji then

J1 [ ::: [ Jpn�2 � int fn(Ji) (i = 1; :::; Pn � 2)

and for all large n;

[log(Pn � 2)]=n � [log(1� 2=pn)]=n+ h(f)� 2"=r > �:

Suppose next that h(f) = +1: If we choose " = r = 1 and a �nite

open cover � such that h(f; �) > �+ 2 then the preceding argument carries

through.�

2.14 Auslander and Yorke�s Chaos (Rulle and Taken�s

Chaos)

Let (x; f) be a dynamical system. The map f is called lyapunov "-unstable

at a point x 2 X if for every neighborhood U of x, there is y 2 U and n � 0
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with d(fn(x); fn(y)) > ": The map f is called unstable at a point x if there

is " > 0 such that f is Lyapunove "- unstable at x:[53],[50].

In [53] a system (X; f) with surjective f is called chaotic if every point

is unstable and X contain a dense orbit. The instability of all points in a

system implies that the system has no isolated points. So the chaos in a stan-

dard dynamical system is de�ned as "topological transitivity plus pointwise

instability". Notice also that if a standard dynamical system has he property

of pointwise instability then it can happen that there is no " > 0 such that all

points are "�unstable with this ": But if, additionally, the system has a dense
orbit then pointwise instability implies uniform pointwise instability [2]. In

general there is no connection between transitivity and pointwise instability.

But on the interval transitivity implies pointwise instability, the converse is

not true.[2]

De�nition 2.14.1: Let " > 0. A map f on a set X is called lyapunov

"-unstable at a point x 2 X if for every neighbourhood U of x there is y 2 U
and n � 0 with d(f n(x),f n(y) > ". The map f is called unstable at a point

x (or the point x itself is called unstable) if there is " > 0 such that f is

luapunov "-unstable at x.

De�nition 2.14.2: The map f is chaotic in the sense of Ruclle and
Takens (or Auslander and Yorke) if :

[i] it is surjective,

[ii] every point is unstable (in the sense of lyapunove),

[iii] X contains a dense orbit.

We will denote this chaos by AY- chaos.
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2.15 Distributional Chaos Or Schweizer-Smital Chaos

Distributional chaos, brie�y DC, is a more sophisticated version of Li -York -

chaos. While the latter notion considers only external values of distances be-

tween pairs of trajectories, DC is based on their asymptotic distribution.

DC was introduced in 1994 by B.Schwiezer and J.Smital for continuous

maps of the interval [25], [54], but later it was generalized to compact metric

spaces[55]. Given a continuous map f : X ! X; a positive integer n and a

real parameter t; put

F nxy (t) =
1

n
# fn; 0 � m < n and �xy(m) < tg :

Where �xy(m) stands for d(fm(x); fm(y)): We are interested in a asymp-

totic behavior of the function F nxy (t) as n gets large. Accordingly we consider

the

functions Fxy(t) and F �xy(t) de�ned by:

Fxy (t) = lim inf
n!1

F nxy (t) and F
�
xy (t) = lim sup

n!1
F nxy (t) :

For any two points x and y, the function Fxy(t) and F �xy(t) are distribution

functions such that Fxy(t) � F �xy(t) for any real t: Changing their values at
a countable set of points if necessary we may assume that they are left-

continuous. We also adopt the convection that Fxy < F �xy means Fxy(t) �
F �xy(t) for some, and hence for all, t in some interval. We refer to Fxy and

F �xy as the Lower and Upper distribution of x and y respectively, It is easy

to see that Fxy(t) = F �xy(t) = 0 for t � 0, and Fxy(t) = F �xy(t) = 1 for

t > dim(X), therefore we assume that the distributions Fxy; F �xy are de�ned

on the interval T = [0; dim(X)]:

De�nition 2.15.1: Let S be a scrambled set. For any x 6= y in S the
map f is said to exhibit distributional chaos of type 1or DC1 if
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F �xy(t) = 1 for all t > 0 and Fxy(t) = 0 for some t > 0

and of type 2 or DC2 if:

F �xy(t) = 1 and Fxy(t) � F �xy(t)

and of type 3 or DC3 if:

F �xy > Fxy

Obviously, DC1 implies DC2, and DC2 implies DC3. Moreover, lim
n!1

F �xy(t) >

0 implies that the trajectories of x and y are proximal, i.e. lim inf
n!1

�xy(n) =

0;while Fxy(") < 1 gives lim sup
n!1

�xy(n) � ": Thus, either of DC1 and DC2
implies Li � Y ork � chaos: The properties of L-Y-chaos and DC1, DC2,
DC3 can be classi�ed relative to the size of the corresponding scrambled set

S: Originally, the scrambled set was supposed to be uncountable. On the

compact interval I the size of S is not essential, since in any case there is a

2-point scrambled set if and only if there is an uncountable perfect set S:

2.16 Kato�s Chaos

De�nition 2.16.1: A map f is called accessible if for every pair of non-

empty open sets U and V of X, there exist points x 2 U; y 2 V and a

positive integer n such that

d(fn(x); fn(y)) < ":

De�nition 2.16.2: The map f is chaotic in the sense of Kato if it is:
[i] sensitive on initial conditions,
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[ii] accessible.

Remark 2.16.3: The Robinson�s chaoticity implies the Kato�s chaoticity
on a complete metric space, but the converse is not true in general (see [56]

).

Remark 2.16.4: The de�nition of the Knudsen�s chaos is equivalent to
the de�nition of Kato�s chaos on a compact metric space (see [57] ).

2.17 !-Chaos

The !-set of the point x is the set of all limit points of the orbit of x, that is,

! (x; f) =
T
n2N
ffk (x) j k � ng

The following properties can be easily deduced from the de�nition.

Lemma 2.17.1: Let f : I ! I be an interval map, x 2 I and n � 1:
Then

[i] ! (x; f) is a closed set,

[ii] ! (fn(x); f) = ! (x; f) ;

[iii] f(! (x; f)) = ! (x; f) ;

[iv] ! (f i (x) ; fn) = f i (! (x; fn)) ;

[v] ! (x; f) =
n�1S
i=0

! (f i (x) ; fn) and if ! (x; f) is in�nite ! (f i (x) ; fn) is

in�nite too.
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De�nition 2.17.2: [28] Let S � A. We say that S is an !-scrambled
set if for any x; y 2 S with x 6= y;
(1) !(x; f)n!(y; f) is uncountable,
(2) !(x; f) \ !(y; f) is nonempty, and
(3) !(x; f) is not contained in the set of periodic points.

We say that f is !� chaotic; if there exists an uncountable !-scrambled
set.

Remark 2.17.3: J. Smitál has proved that in the case of a compact
interval !(x; f) � P (f) implies that !(x; f) is �nite. Thus, in this case,

condition (3) is not needed in De�nition 2.17.2.
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3 Related De�nitions of Chaos and Cross-

links

In this chapter, we will examine the relationships between pairs of de�nitions.

In some cases two or more of the conditions de�ned in Chapter 2 have been

used to characterize a function as chaotic.

Thus, the comparisons presented in this chapter will help clarify pre-

vious potential de�nitions of chaos. The main results of Chapter 3, with

the number on an arrow referring to the proposition in which a proof or a

counterexample of the relationship is provided.

The Tent function (see Figure 3.0.1) T : [0; 1]! [0; 1] de�ned by

T (x) =

(
2x ; 0 � x � 1

2

2� 2x ; 1
2
< x � 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

y
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Figure 3.0.1: The tent map

In order to �nd the �xed points of T; we let T (x) = x; which implies

either 2x = x or 2� 2x = x: Thus, the only two �xed points of T are x = 0
and x = 2

3
: To �nd an eventually �xed point of T; we need an x that is not

0 or 2
3
such that some iterate of x equals either 0 or 2

3
:

Consider x = 1
12

T (
1

12
) = 2� 1

12
=
1

6

T (
1

6
) = 2� 1

6
=
1

3

T (
1

3
) = 2� 1

3
=
2

3

and 2
3
is a �xed point. Thus, T 3( 1

12
) = 2

3
; and therefore T n( 1

12
) = 2

3
for

all positive integers n � 3; so x = 1
12
is an eventually �xed point.

Next we illustrate periodic points. Let x = 2
3

T (
2

9
) = 2� 2

9
=
4

9

T (
4

9
) = 2� 4

9
=
8

9

T (
8

9
) = 2� 2� 8

9

Thus T 3(2
9
) = 2

9
and T n( 2

9
) 6= 2

9
for n = 1 and 2, so x = 2

9
is a periodic

point of T with period n = 3: Similarly, one can show that x = 4
13
is a periodic

point of T with period n = 6.
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Now we will illustrate eventually periodic points. Let x = 1
18

T (
1

18
) = 2� 1

18
=
1

9

T (
1

9
) = 2� 1

9
=
2

9

and 2
9
is a periodic point, as we have just shown. Thus, x = 1

18
is an

eventually periodic point.

In some of the proofs to follow, we will associate each x 2 [0; 1] with a
sequence x0x1x2x3::: by means of a function h that is related to T and which

we now de�ne. Let h map the interval [0; 1] to the set of all sequences of 0�s

and 1�s by

h(x) = the sequence x0x1x2::: (0:1)

where

xn =

(
0 : 0 � T n(x) � 1

2

1 : 1
2
� T n(x) � 1

and where T 0(x) = x0 by de�nition. Notice that by the de�nition of

h, if h(x) = x0x1x2x3:::, then h(T (x)) = x1x2x3x4:::, and by induction,

h(T n(x)) = xnxn+1xn+2:::.

Thus, h � T is a �left shift�on the set of all sequences of 0�s and 1�s, in
the sense that h(T (x)) = x1x2 :::, so that under h, the sequence x0x1x2::: is

shifted to the left, with x0 disappearing. We will associate a number x 2
[0; 1]with its image under h by writing x � x0x1x2:::; where h(x) = x0x1x2:::.
For example, x = 2

9
� 001001:::; since

x =
2

9
2
�
0;
1

2

�
implies x0 = 0
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Figure 1: 3.0.2

T 1(x) =
4

9
2
�
0;
1

2

�
implies x1 = 0

T 2(x) =
8

9
2 (1
2
; 1] implies x2 = 1

and then the sequence repeats itself since x = 2
9
is a periodic point with

period n = 3.

Another important feature of the association of each x 2 [0; 1] with its
image under h is the division of the interval [0; 1] into blocks of length 1

2n
for

every positive integer n (see Figure 3. 0.2).

For example, if 0 � x � 1
2
, then x0 = 0, whereas if 1=2 < x � 1, then x0

= 1. It follows that by considering x0, we can determine which half of the

[0; 1] interval x � x0x1x2::: lies in.
Similarly,

if 0 � x � 1=4; then 0 � T (x) � 1=2; so that x0 = 0; x1 = 0:
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If 1=4 < x � 1=2; then 1=2 < T (x) � 1; so that x0 = 0; x1 = 1:

If 1=2 < x < 3=4; then 1=2 < T (x) � 1; so that x0 = 1; x1 = 1:

If 3=4 � x � 1; then 0 � T (x) � 1=2; so that x0 = 1; x1 = 0:

By considering x0x1, we can determine which quarter of the[0; 1] interval

x � x0x1x2:::lies in. Similarly, by considering x0x1::: xn, we can determine
which subinterval of [0; 1] of length1=2n that x lies in.

It can also be shown that h is one-to-one and onto the set of sequences

of 0�s and 1�s,

excluding ��nite�sequences of the form x0x1x2:::0::: (that is, sequences in

which all terms to the right of a given term are 0). We will denote by A this

set of sequences which excludes �nite sequences. Thus, in future examples

we will construct sequences in A whose associated numbers in [0, 1] have

speci�ed properties for T:

The Tent function is an important function because it exhibits all of

the characteristics that we will present in this Chapter that are associated

with chaotic functions. Let us brie�y explore one of the most important

characteristics of the Tent function: long term iterates.

Let x = 2
7
; y = 9

32
; and z = �

11
: Then jx� yj < 0:005 and jx� zj < 0:002,

so x; y; and z are close together. However, if we look at the 29th iterates of

these numbers, we see that they have separated over the interval [0; 1] :

T 29(
2

7
) =

6

7
; T 29(

9

32
) = 0; T 29(

�

11
) � 0:169955



89

We see that small di¤erences in the initial starting points lead to large

di¤erences in higher iterates.

3.1 Transitivity, Total transitivity and Mixing

We are going to see that, for interval maps, the properties of total transitivity,

topological weak mixing and topological mixing coincide, contrary to what

happens in general. Moreover, the notions of transitivity and mixing are

very close to each other. Indeed, if f is a transitive interval map which is

not mixing then the interval can be divided into two subintervals on each of

which f 2 is mixing. We also give some properties equivalent to mixing for

interval maps. The results of this Section are classical ( we here follow [58]),

see also [4] :

De�nition 3.1.1: Let X be a compact metric space and f :X ! X a

continuous map. The transformation f is totally transitive if fn : X ! X

is transitive for all integers n � 1:

A transitive set is a closed set E � X such that f(E) � E and T jE is
transitive.

De�nition 3.1.2: Let X be a compact metric space and f : X ! X a

continuous map. The map f is called (topologically) weakly mixing if f � f
is transitive on X �X:

De�nition 3.1.3: Let X be a compact metric space and f : X ! X

a continuous map. The transformation f is (topologically) mixing if for
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all nonempty open sets U; V there exists N � 0 such that for all n � N ,

fn(U) \ V 6= �.

It is well known that mixing implies weak mixing [60] : Moreover weak

mixing implies total transitivity; this is a folklore result. It can easily be

proved using the following well-known result, which is due to Furstenberg

[61].

Proposition 3.1.4: Let X be a compact metric space and f : X ! X

a continuous map. If (X; f) is weakly mixing then for all integers n � 1,
then the product system (Xn; f � :::� f) (with n times f) is transitive.

Proposition 3.1.5: Let X be a compact metric space and f : X ! X a

continuous map. If (X; f) is weakly mixing then for all integers n � 1 the
system (X; fn) is weakly mixing; in particular (X; f) is totally transitive.

Proof : Let n � 1 and U;U 0; V; V 0 non empty open sets in X: De�ne

W = U � f�1(U)� :::� f�(n�1)(U)� V � f�1(V )� :::� f�(n�1)(V )

and

W =
0

U 0 � :::� U| {z }�
n times

V 0 � :::� V 0| {z }
n times

The sets W;W 0 are open in X2n; and (X2n; f � :::� f) (with 2n times f)
is transitive by Proposition 3.1.4, thus there exists k � 0 such that fk(W )\
W 0 6= �: It means that f�(k+i)(U)\U 0 6= � and f�(k+i)(V )\ V 0 6= � for all 0
� i � n � 1. There exists 0 � i � n � 1 such that k + i is a multiple of n;
write k + i = np: One has then that

(f � f)�np(U � V ) \ (U 0 � V 0) 6= �
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that is (X; fn) is weakly mixing. This clearly implies that (X; fn) is

transitive.�

Theorem 3.1.6: Let X be a compact metric space and f : X ! X a

continuous map. If (X; f) is mixing then it is weakly mixing. If (X; f) is

weakly mixing then (X; f) is totally transitive.

Proposition 3.1.7: An interval map f : [a; b] ! [a; b] is mixing if and

only if for all " > 0 and all non degenerate subintervals J there exists an

integer N such that 8n 2 N , fn(J) � [a+ "; b� "] :

Proof : Suppose �rst that f is mixing and put U1 = (a; a + ") and

U2 = (b � "; b): If J is a nonempty open interval, there exists N1 such

that 8n 2 N1; f
n(J) \ U1 6= �; because f is mixing. In the same way,

there exists N2 such that 8n 2 N2; f
n(J) \ U2 6= �: Therefore, for all

n � maxfN1; N2g ; fn(J) meets both U1 and U2; which implies that fn(J)
� [a + "; b � "] by connectedness. If J is a non degenerate subinterval, one
considers Int(J) which is not empty. Suppose now that for all " > 0 and all

non degenerate subinterval J there exists an integer N such that 8n 2 N;
fn(J) � [a+ "; b� "]: Let U; V be two nonempty open sets in [a; b]. Let J;K
be two non degenerate subintervals such that J � U;K � V and neither a

nor b is an endpoint of K; let " > 0 such that

K � [a+ "; b� "]

By assumption, there exists N such that 8n 2 N; fn(J) � [a + "; b � "];
which implies that fn(U) \ V 6= �. Consequently, f is mixing.�

De�nition 3.1.8: Let f : I ! I be an interval map, f is said �-

expanding if for every subinterval [x; y] on which f is monotone one has

jf(x)� f(y)j � � jx� yj.
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Lemma 3.1.9: Let f : I ! I be a �-expanding interval map. Suppose

that � > N , where N is a positive integer. If J is a non degenerate subin-

terval, then there exists an integer n � 0 such that fn(J) contains at least
N distinct critical points.

Proof : Let Cf be the set of critical points of f; it is a closed set. Put �

= �=N and consider a subinterval J: If J contains exactly k distinct critical

points with k � N � 1; then JnCf has k+1 connected components, that we
call J0; :::; Jk. One has jJ0j+ :::+ jJkj = jJ j, thus there exists 0 � i � k such
that jJij � jJ j =(k+1) � jJ j =N . The interval Ji does not contain any critical
point thus f jJi is monotone. By assumption one gets that jf(Ji)j > � jJij,
thus

jf(J)j � jf(Ji)j � � jJij � � jJ j : (3.1)

Suppose that J is a non degenerate subinterval and that for all n �
0; fn(J) contains strictly less than N distinct critical points. According to

Equation (1), jfn(J)j > �n jJ j for all n � 0; which is a contradiction because
� > 1:�

Lemma 3.1.10: Let f : I ! I be an interval map and a; b 2 I; a < b.
Suppose that a is a �xed point of f and that f is increasing with a slope

greater than �> 1 on [a; b]. Then for all " > 0 there exists n � 0 such that
fn([a; a+ "]) � [a; b].
Proof: If a+" � b then f([a; a+"]) � [a; a+�"] because a is a �xed point

of f and f is increasing with a slope greater than � > 1 on [a; b]. For the

same reason, as long as a a+ �k�1" � b; one has fk([a; a+ "]) � [a; a+ �k"]:
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Since � > 1; there exists an integer n such that a + �n�1" � b < a + �n";

hence fn([a; a+ "]) � [a; b]:�

Example 3.1.11: Here is a basic example of a mixing transformation,
which is a piecewise linear map with a constant slope (in absolute value).

Let p be an integer, p � 2. We de�ne the map fp : [0; 1]! [0; 1] by:

fp(x) = px� 2k if x 2
h
2k
p
; 2k+1

p

i
, 0 � k � p�1

2
;

fp(x) = �px+ 2k + 2 if x 2
h
2k+1
p
; 2k+2

p

i
, 0 � k � p�2

2
:

fp is piecewise monotone and its slope is�p on each interval of monotonic-
ity. Moreover, the image of a non degenerate interval is non degenerate.

Let J be a non degenerate interval. By Lemma 3.1.9, there exists n such

that fnp (J) contains p � 1 distinct critical points. If p � 3; fnp (J) contains
at least one critical point whose image is 0; if p = 2; fnp (J) contains

1
2
and

f 2p (
1
2
) = f(1) = 0. In both cases, fn+2p is a non degenerate interval containing

0. By Lemma 3.1.10, there exists an integer m such that fn+m+2p (J) �
h
0; 1

p

i
;

thus fn+m+3p (J) � [0; 1] :�

If the interval map f is transitive, the following Proposition shows that

either f is totally transitive, or the interval can be divided into two subin-

tervals on which f 2 is totally transitive. The next Proposition shows that

total transitivity implies mixing. These two results were proven by Barge

and Martin [62, 63]. The proof, which is di¤erent, can be found in [64]. In

the demonstrations below we follow the ideas of Barge and Martin.

Proposition 3.1.12: Let f : [a; b] ! [a; b] be a transitive interval map.

Then one of the following cases holds:

i) f is totally transitive (that is, fn is transitive for all n � 1).
ii) There exists c 2 (a; b) such that, if J = [a; c] and K = [c; b], then

f(J) = K and f(K) = J: Moreover, f 2jJ and f 2jK are totally transitive and
c is the unique �xed point of f .
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Proof : There exists a point x0 of dense orbit and its !-limit set !(x0; f)

is equal to the whole interval [a; b]: Fix an integer n � 1 and put Wi =

!(f i(x0); f
n) for 0 � i � n� 1.

As [a; b] = W0 [ ::: [ Wn�1; at least one of the Wi�s has a nonempty

interior according to Baire�s Theorem. Moreover, f(Wi) = Wi+1modn for

0 � i � n� 1; hence each Wi has a nonempty interior. If Int(Wi)\ Int(Wj)

6= �; then Wi = Wj: Indeed it implies that there exists k � 0 such that

fkn+i(x0) 2 Int(Wi) \ Int(Wj); Wj is invariant by fn; thus fk�n+i(x0) 2 Wj

for all k0 � k; so Wi � Wj . Similarly one has Wj � Wi thus Wi = Wj .

De�ne "n as the set of connected components of the sets Int (Wi); 0 �
i � n� 1: The elements of "n are disjoint open intervals the union of which
is dense in [a; b]. For every C 2 "2; f(C) is a closed non degenerate interval ,
and it is contained in someWi; thus there exists C 0 2 "n such that f(C) � C 0:
Moreover, if one �xes C 2 "n; then for all C 0 2 "n there exists k � 1 such
that fk(C) \ C 0 6= �; because the orbit of x0 is dense, thus fk(C)2 C 0: This
implies that "n is �nite and its elements are cyclically permuted under the

action of f: Write "n = fC1; :::; Cpg with f(Ci) � Ci+1modp for 1 � i � p; the
inclusions are indeed equalities because the set [Ci is dense hence [f(Ci) is
dense too.

If for every integer n � 1 the number of elements of "n is 1 then !(x0; fn) =
[a; b] and f is totally transitive; this is the case (i) of the Proposition.

Suppose that for a given n the number p of elements of "n is strictly

greater than 1. We are going to show that p = 2: Let c be a �xed point of

f . If there exists C 2 "n with c 2 C, then f(C) = C; which is impossible
because the elements of "n are cyclically permuted. Similarly, c cannot be

an endpoint of [a; b]. Consequently, the point c is necessarily a common

endpoint of two distinct elements C and C 0 of "n. One has then f(C) = C 0

and f(C 0) = C; which is possible only if p = 2; this also implies that n is

even. If we write J = [a; c] and K = [c; b], we have "n = {Int (J) , Int (K)}
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and

f(J) = K , f(K) = J (3:2)

Moreover, c is the unique �xed point of f and c is not an endpoint. As n

is even, one has

!(x0; f
n) � !(x0; f 2); combining this with Equation (3.2), we get that

"2 = fInt(J); Int(K)g:

Therefore both f 2jJ and f 2jK are transitive. If f 2jJ is not totally tran-
sitive, then what is above shows that f 2jJ has a unique �xed point c� and
a < c�< c. But c is already a �xed point of f 2jJ ; thus f 2jJ is totally transi-
tive, as well as f 2jK : This is the case (ii) of the Proposition.�

Proposition 3.1.13 : Let f : I ! I be an interval map. If f is totally

transitive then it is mixing.

Proof: Write I = [a; b]. Let J be a non degenerate subinterval and

" > 0. There exists a periodic point x 2 J . One can �nd a periodic point
x1 2 (a; a+ ") such that fn(x1) =2 fa; bg for all n � 0. De�ne

y1 = minffn(x1) j n � 0g

and

z1 = maxffn(xn)jn � 0g

In the same way, there exists a periodic orbit contained in (a; b) such that

the maximal point z2 belongs to (b� "; b); let y2 be the minimal point in the
orbit of z2. Let k be a common multiple of the periods of x1, y1 and y2.

Put g = fk and K =
T+1
n=0 g

n(J): The set K is an interval because for all

n; gn(J) contains x; which is a �xed point for g: Moreover, g is transitive

by assumption; this implies that K is dense in [a; b] so it contains the points

y1; y2; z1; z2: Let pi and qi (i = 1; 2) such that yi 2 gpi(J) and zi 2 gqi(J), and
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put N = maxfp1; p2; q1; q2g. The points yi and zi are �xed by g, thus yi; zi
belong to gN(J) and by connectedness [yi; zi] � gN(J). By choice of yi; zi; the
interval gN(J) = fkN(J) contains the whole orbit of yi, thus [yi; zi] � fn(J)

for all n � kN: Since y1 < a+ " and z2 > b� "; this implies that [a� "; b+ "]
� fn(J) for alln � kN: This means that f is mixing by Proposition 3.1.7.

The next Proposition is a consequence of the above results.

Corollary 3.1.14: Let f : I ! I be a transitive interval map. Then f

is mixing if and only if it has a periodic point of odd period di¤erent from 1.

Proof : Suppose �rst that f is mixing. The set of �xed points of f is a

closed set of empty interior. Let J be a non degenerate closed subinterval

included in Int(I) and containing no �xed point. Then, there exists an

integer N such that fn(J) � J for all n � N: Let n � N be an odd integer,

one gets that fn has a �xed point x 2 J . Let p be the period of x for ; p
divides n, thus p is odd; in addition p > 1 because x 2 J:

Suppose now that f is transitive but not mixing. The map f is in the

case (ii) of Proposition 3.1.12: there exist two subintervals J;K such that

f(J) = K; f(K) = J and J [K = I: Consequently, any periodic point has

an even period, except the common endpoint of J and K which is a �xed

point. By refutation, a transitive map with a periodic point of odd period

di¤erent from 1 is mixing.�

Summary Theorems:

Theorem 3.1.15: Let f : [a; b] ! [a; b] be a transitive interval map.

Then one of the following cases holds:

1) f is mixing.
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2) there exists c 2 (a; b) such that, if J = [a; c] and K = [c; b], then

f(J) = K and f(K) = J , in addition, c is the unique �xed point of f and

both f 2jJ and f 2jK are mixing.

Theorem 3.1.16: Let f : [a; b] ! [a; b] be an interval map. Then the

following properties are equivalent:

1) f is transitive and has a periodic point of odd period di¤erent from 1,

2) f 2 is transitive,

3) f is totally transitive,

4) f is weakly mixing,

5) f is mixing,

6) For all " > 0 and all non degenerate subinterval J , there exists an

integer N such that for all n � N , fn(J) � [a+ "; b� "].

Example 3.1.17: Let g : [0; 1]! [0; 1] be de�ne by:

g(x) =

8><>:
1
2
+ 2x ; 0 � x � 1

4
3
2
� 2x ; 1

4
� x � 1

2

1� x ; 1
2
� x � 1
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Figure 3.1.1: The graph of G(x)

Let J =
�
0; 1

2

�
and K =

�
1
2
; 1
�
: Then g(J) = K and g(K) = J: The map

g2jK is equal to the tent map f 2 of Example 3.1.11 up to a scaling thus g2jK
is mixing. The map g2jJ is similar to g2jK except it is upside down, thus a
similar proof shows that g2jJ is mixing. If U is a non empty open set then

either U \J 6= �; and for all n large enough one has g2n(U) � J by Theorem
3.1.14, or U \K 6= �; and for all n large enough one has g2n(U) � K: In both
cases there exists n such that gn(U) [ gn+1(U) = [0; 1] thus g is transitive.

Now we end this section by showing that the tent map is transitive.

Example 3.1.18: In order to show that T is transitive, we will �rst show
that there is an x 2 [0; 1] such that the orbit of x under T is dense in [0; 1]:
Consider the sequence s:

s = 01|{z}
1 block

00011011| {z }
2 block

000001010011100101110111| {z }
3 block

:::
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where s is composed of all blocks of singles, doubles, triples, etc. of 0�s

and 1�s. Since s is a non-�nite sequence of 0�s and 1�s, s 2 A: Then, since
h is onto A; there exists some x� 2 [0; 1] such that h(x�) = s; which implies
that

x� � x0x1x2x3x4::: = 0100011011000001010011100101110111::: :

Therefore,

x� 2 [0; 1=2] since x� � 0x1x2::: ;

T (x�) 2 [1=2; 1] since T (x�) � 1x2x3::: ;

T 2(x�) 2 [0; 1=4] since T 2(x�) � 00x4x5::: ;

T 4(x�) 2 [1=4; 1=2] since T 4(x�) � 01x6x7::: ;

T 6(x�) 2 [3=4; 1] since T 6(x�) � 10x8x9::: ;

etc. In general for any interval L = [ k
2n
;
k+1

2n
], there exist a positive integer

m such that Tm(x) 2 L: Thus, the orbit of x under T is dense in [0; 1]:
Now we will show T is transitive. Let U and V be non-empty open

intervals in [0; 1]. Since the orbit of x is dense, there exists a positive integer

n such that y � T n(x) 2 U: But then, again since the orbit of x is dense,
there exists a positive integer m such that T n+m(x) = Tm(y) 2 V: Thus, T
is transitive.
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3.2 Transitivity and Density of Periodic Points

By [10]; Vellekoop and Berglund showed that for continuous maps on an

interval in R, transitivity implies that the set of periodic points is dense.

The converse is note true: De�ne on I = R+ the function

f(x) =

8>>>><>>>>:
3x ; 0 � x < 1

3

�3x+ 2 ; 1
3
� x < 2

3

3x� 2 ; 2
3
� x < 1

f(x� 1) + 1 ; x � 1

The set of periodic points are dense but f is not transitive [example

2.1.15].

Example 3.2.1: Tent map has a dense set of periodic points.
Note that any number in [0, 1] of the form even integer

odd integer is a periodic point

for T (shown in [5]; in Section 3.0 we looked at the example x = 2
9
). Thus,

to show that T has a dense set of periodic points, it su¢ ces to show that the

numbers of the form even integer
odd integer are dense in [0, 1].

Let U be a non-empty open set in [0; 1]: Then U must contain some

interval [a; b]. Let d = b � a and choose a positive odd integer n such that
n > 2

d
: Then for any positive integer l;

l

n
� l � 1

n
=
1

n
<
d

2
:

Since [a; b] � U has length d, there must exist a positive integer k, 2 �
k � n � 1 such that k

n
and k�1

n
are both in [a; b] � U . Then either k or

k� 1 is even, so that either k
n
or k�1

n
is of the form even integer

odd integer , which implies

there exists a number of the form even integer
odd integer 2 [a; b] � U: Thus, U contains a

periodic point, and therefore T has a dense set of periodic points.
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3.3 Uniform Sensitivity and Transitivity

Recall Theorem 2.1.3 [6]: Let f : X ! X be a continuous map where X

is a metric space .Then if f is topologically transitive and has dense periodic

point then f exhibits sensitive dependence on initial conditions.

And when X = I by [10] transitivity =) sensitivity.

The converse is not true.

Example 3.3.1: Consider the map f : R! R given by f(x) = 2x

­5 ­4 ­3 ­2 ­1 1 2 3 4 5

­10

­8

­6

­4

­2

2

4

6

8

10

x

y

Figure 3.3.1 : f(x)=2x with line x

Clearly f is sensitive, but we can observe from the graph that for x >

0; fn(x)!1 when n!1: On the other hand for for x < 0; fn(x)! �1
so there does not exist an orbit that goes from x < 0 to x > 0 or vice versa

and the map can be decomposed into two open disjoint sets. So the f is not

transitive.
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Example 3.3.2: The tent map has sensitive dependence on initial con-
ditions.

The following proof is due to Gulick in [21]. First recall that f has SDIC

if there is an " > 0 such that for any x in the domain and for any � > 0;

there exist a y in the domain and a positive integer n that satisfy jx� yj < �
and jfn(x)� fn(y)j > ":

Choose " in the de�nition of SDIC to be1=4; let x 2 [0; 1]; and let � > 0:
We will show that there exist a dyadic rational v; an irrational w; and a

positive integer m such that either

jTm(x)� Tm(v)j > 1=4 or jTm(x)� Tm(w)j > 1=4

It is shown in [21] that for any dyadic rational v; there exists a positive

integer n such that T n(v) = 0; and, since 0 is a �xed point, it follows that

T k(v) = 0 for all positive integers k such that k � n. It is also shown in

[21] that any irrational w is not �xed or eventually �xed, or even eventually

periodic for T: Then, if some iterate of w is in (0; 1=2), some future iterate

of w must be greater than 1/2 , since T doubles each number in (0; 1=2). So

there exists some integer m > n such that Tm(w) > 1=2: Also, since dyadic

rationals and irrationals are dense in [0; 1], for any � neighborhood U of x;

there exist a dyadic rational v and an irrational w in both U and [0; 1]:

The idea behind this proof is that for any x; there is a dyadic rational

and an irrational close to x: Eventually iterates of v will be 0, whereas there

are in�nitely many iterates of w that will be greater than 1/2 . Since an

iterate of x cannot be close to both 0 and 1/2 , the associated iterates of x

must be a certain distance (in this case, the distance is 1/4 ) from either the

associated iterates of v or the associated iterates of w:

Formally, let n be a positive integer such that T n(v) = 0, and let m > n

be a positive integer such that Tm(w) > 1=2: Since m > n; Tm(v) = 0; and

thus
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jTm(v)� Tm(w)j > 1=2:

Using the triangle inequality, we see that

1=2 < jTm(v)� Tm(w)j � jTm(v)� Tm(x)j+ jTm(x)� Tm(w)j:

Thus either

1=4 < jTm(v)� Tm(x)j

or

1=4 < jTm(x)� Tm(w)j:

Therefore, T has SDIC.

This de�nition of sensitivity is called uniform sensitivity.

3.4 Uniform Sensitivity and Pointwise Sensitivity

De�nition 3.4.1: A function f has pointwise sensitive dependence on initial
conditions (PSDIC) if for every x in the domain of f , there is an "x > 0

such that for any � > 0, there exist a y in the domain and a positive integer

n that satisfy jx� yj < � and jfn(x)� fn(y)j > "x.

Note that y and n depend on x; �; and "x; and that "x depends on x; but

in uniform de�nition, " does not depend on x: This means that if a function

has USDIC, then it automatically has PSDIC.

Proposition 3.4.2: USDIC implies PSDIC.

Proof: The only di¤erence between the de�nitions of USDIC and PSDIC

relates to the conditions on ": In the de�nition of USDIC, the " is independent
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of x, whereas in the de�nition of PSDIC, the " is dependent on x: Thus, this

implication is trivial.

Example 3.4.3: PSDIC does not imply USDIC.

De�ne a function hn : [0; 1=2n]! [0; 1=2n] for n = 1; 2; 3; ::: such that:

hn =

8><>:
2x ; x 2

�
0; 1

2n+2

�
�2x+ 1

2n
; x 2

�
1

2n+2
; 1
2n+1

�
2x� 1

2n
; x 2

�
1

2n+1
; 1
2n

�

Now de�ne a function H : [0; 1)! [0; 1) by letting

H(x) = h1(x) for x 2 [0; 1=2);

H(x) = h2(x� 1=2) + 1=2 for x 2 [1=2; 3=4);

H(x) = h3(x� 3=4) + 3=4 for x 2 [3=4; 7=8);

etc, so that

H(x) = hn(x�
2n�1 � 1
2n�1

) +
2n� 1� 1
2n�1

for x 2 [2
n�1 � 1
2n�1

;
2n � 1
2n

)

We will prove that H has PSDIC but not USDIC by considering each

interval of H where H is equal to hn for some positive integer n; possibly

shifted up and to the right. We will see that on [0; 1=2n); hn has PSDIC for

each n = 0; 1; 2; ::: by �rst showing that if x 2 ( 1
2n+1

; 1
2n
); then eventually for

some positive integer m; hmn (x) will be in the interval [0; 1= (2
n+2)): On the

interval [0; 1
2n+2

); hn is a modi�ed Tent function and therefore has PSDIC.
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First we will show that if x 2 ( 1
2n+1

; 1
2n
), then hn(x) < x: Consider x 2

( 1
2n+1

; 1
2n
). Then

hn(x)� x = 2x�
1

2n
� x

= x� 1

2n

< 0; since x <
1

2n
:

Thus, since hn(x) < x and hn(x) 2 [0; 12n ) for x 2 (
1

2n+1
; 1
2n
), fhmn (x)g1m=0

is a decreasing sequence for x 2 ( 1
2n+1

; 1
2n
), with no �xed points in the inter-

val ( 1
2n+1

; 1
2n
). So eventually for some positive integer m; hmn (x) 2 [0; 1

2n+1
]:

Therefore, to prove that hn has PSDIC, it is su¢ cient to consider hn on the

interval [0; 1
2n+1

]. But once we are considering hn on the interval [0; 1
2n+1

]; the

argument showing that hn has PSDIC is analogous to the argument showing

that the Tent function has USDIC in Example 3.3.2, letting "x in the de�n-

ition of PSDIC be 1
2n+3

: In any �-neighborhood of any x 2 [0; 1
2n+1

], we can

�nd an irrational number v and a dyadic rational number w such that for

some positive integer m,

jhmn (x)� hmn (v)j > "x

or

jhmn (x)� hmn (w)j > "x:

So on [0; 1
2n
); hn has PSDIC for each n = 0; 1; 2; :::: Shifting hn up and

to the left will not alter the conditions required for PSDIC, and thus H has

PSDIC on every interval of the form [2
n�1�1
2n�1 ;

2n�1
2n
) in [0; 1]. Therefore, H

has PSDIC. Note that although we can show that for each positive integer

n, hn has USDIC, the "x in the proof above depends on n, and therefore H

does not necessarily have USDIC.
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In fact, we will now show that H does not have USDIC. Let " > 0 be

arbitrary. Choose a positive integer n such that 1
2n
< ". Now consider hn: For

any z 2 [0; 1
2n+1

]; hn(z) remains in the interval [0; 12n ]. Therefore, let x = 0;

and let � < 1
2n
: Then for any y 2 [0; 1

2n
] such that jx � yj < �; we have

hmn (y) 2 [0; 12n ) for all positive integers m, which implies

jhmn (x)� hmn (y)j = j0� hmn (y)j <
1

2n
< "

for every positive integerm: Now since H is a transposition of hn on some

subinterval of the form [2
n�1�1
2n�1 ;

2n�1

2n
); H does not have USDIC.

3.5 Extreeme Sensitivity and Uniform Sensitivity

De�nition 3.5.1: A function f has extreme sensitive dependence on initial
conditions (ESDIC) if there is an " > 0 such that for any x in the domain

and for any � > 0, there exists a y in the domain such that jx � yj < �,

lim supn!1 jfn(x)� fn(y)j � ", and lim infn!1 jfn(x)� fn(y)j = 0.

This de�nition is due to Du in [65].

Example 3.5.2: Tent map has ESDIC.
Proof: We will show that T has extreme sensitive dependence on initial

conditions with " = 1/4 in the de�nition of ESDIC. Let x 2 [0; 1]; x �
x0x1x2:::; a non-�nite sequence. Let

x0n =

(
1 ; if xn = 0

0 ; if xn = 1
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and choose y 2 [0; 1] such that

y � s = x00x01x2x3x04x05x6x7:::x15x016x17x18x19:::x63x064x065x66:::;

where the ym; ym+1 terms have primes on them, form = 0; 1; 2; :::: Assume

that this manipulation of the sequence associated with x does not produce

a �nite sequence. We will consider the case that s is �nite after we examine

the non-�nite sequence case.

Since A is the set of all non-�nite sequences and s is not a �nite sequence

by assumption, s is in A; and thus a y 2 [0:1] such that h(y) = s; or such

that y � s, can be chosen since h is onto A: Consider the blocks of length 1
4

of the interval [0; 1] and the corresponding �rst two terms of the associated

sequence (see Figure 3.0.2).

Let

z 2 [0; 1]; z � z0z1z2:::;

and let

w � z00z01z2::::

If z0z1 = 00, then

w � z00z01z2::: = 11::: ;

so that jz � wj > 1
4
. If z0z1 = 01, then w � z00z

0
1z2::: = 10:::, and

jz � wj > 1
4
: Similarly, if z0z1 = 11 or 10; then jz � wj > 1

4
:

Now consider jx � yj: By the statements above concerning z and w, we
can see that

jx� yj > 1

4
; since y � x00x01::: :

We also have that
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jT 4(x)� T 4(y)j > 1

4
; since T 4(y) � x04x05:::

jT 16(x)� T 16(y)j > 1

4
; since T 16(y) � x016x017::::

More generally, for any positive integer n,

jT 4n(x)� T 4n(y)j > 1

4
; since T 4

n

(y) � x04nx04n+1::::

Thus,

lim sup
n!1

jT n(x)� T n(y)j > 1

4
:

Now it remains to show that lim infn!1 jT n(x)� T n(y)j = 0: But

jT 2(x)� T 2(y)j < 1

4
; since T 2(y) � x2x3:::;

jT 6(x)� T 6(y)j < 1

210
; since T 6(y) � x6x7:::x15::::

For any positive integer n, we observe that the number of identical initial

terms of T 4
n+2(y) and T 4

n+2(x) is 4n+1 � 4n � 2. Thus

jT 4n+2(x)� T 4n+2(y)j < 1

2(4n+1�4n�2)
! 0 as n!1:

Thus,

lim inf
n!1

jT n(x)� T n(y)j = 0:

If the sequence s is �nite, then we can still use the same ideas as just

discussed, but we

will need to slightly modify the sequence, because a y 2 [0; 1] such that
y � s does not necessarily exist, since the sequence is not in A: Instead, we
consider the sequence

t = x00x
0
1x2x3x

0
4x
0
5 1 x7x8:::x15x

0
16x

0
17 1 x19x20:::x63x

0
64x

0
65 1 x67x68:::
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(We have replaced x4n+2 for n = 1; 2; 3; ::: with the number one to guar-

antee that t is non-�nite). Now t 2 A; and therefore there exists a y 2 [0; 1]
such that h(y) = t; or y � t; since h is onto A:
With such a sequence, we clearly still have that for any positive integer

n;

jT 4n(x)� T 4n(y)j > 1

4
; since T 4(y) � x04nx04n+1::::

The argument considering the lim infn!1 jT n(x) � T n(y)j is slightly al-
tered.

jT 7(x)� T 7(y)j < 1

29
; since T 7(y) � x7x8:::x15:::;

jT 19(x)� T 19(y)j < 1

245
; since T 19(y) � x19x20:::x63:::

For any positive integer n; we observe that the number of identical initial

terms of T 4
n+3(y) and T 4

n+3(x) is 4n+1 � 4n � 3: Thus

jT 4n+3(x)� T 4n+3(y)j < 1

24n+1�4n�3
! 0 as n!1;

and lim infn!1 jT n(x)� T n(y)j = 0:
So in both cases, T has ESDIC.

Proposition 3.5.3: ESDIC implies USDIC.

Proof: Let f : X ! X have ESDIC, let x 2 X, and let U be any open

neighborhood of x: Then by the de�nition of ESDIC, there exists � > 0 and

there is a y 2 U such that

lim sup
n!1

jfn(x)� fn(y)j � ":

So clearly there exists a positive integer n such that
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jfn(x)� fn(y)j � "
2
;

and thus f has USDIC.

Example 3.5.4: USDIC does not imply ESDIC.

Proof: In [65] Du shows that a function with USDIC does not necessarily

have ESDIC by letting S = fxjx = x0x1x2:::; where xn = 0 or 1g and
de�ning the metric d on S by d(x; y) =

P1
n=0

xn�yn
2n+1

: Finally, de�ne the shift

map � by �(x) = �(x0x1x2:::) = x1x2:::: Du shows that � has USDIC but

not ESDIC:

3.6 Speci�cation and Mixing

We saw that a transitive interval map has dense periodic points. If in addition

the map is mixing then it satis�es the speci�cation property, which roughly

means that there exist periodic points whose orbits approach pieces of orbits

arbitrarily chosen. This result is due to Blokh [64].

We �rst shows three Lemmas then we prove the speci�cation property for

mixing interval maps.

Lemma 3.6.1: Let f : I ! I be an interval map. Consider x 2 I,
0 < " < jIj =2 andn � 0: Then there exist closed subintervals J0; :::; Jn such
that

� f(Ji) = Ji+1 for 0 � i � n� 1,
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�f i(x) 2 Ji,

�Ji � [f i(x)� "; f i(x) + "],

� there exists 0 � i � n such that the interval Ji contains either f i(x)�"
or f i(y) + ".

In addition, if x + " 2 I, then one can choose J0 � [x; x + "], and if

x� " 2 I one can choose J0 � [x� "; x].

Proof: Write xk = fk(x) for k � 0. We show the Lemma by induction on
n.

Case n = 0: since "< jJ j =2, the interval I contains either x � " either
x + ". If x + " 2 I, we can put J0 = [x; x + "], and if x � " 2 I we can put
J0 = [x� "; x].
Suppose that the Lemma is true at rank n� 1, and write J0; :::; Jn�1 the

subintervals given by the Lemma. If f(Jn�1) � [xn � "; xn + "], put Jn =
f(In�1); the intervals (J0; :::; Jn) are suitable. Otherwise, f(Jn�1) = fn(J0)

is not included in [xn � "; xn + "]; by connectedness fn(J0) contains either
xn�" or xn+":We suppose that J0 � [x; x+"]; the case when J0 � [x�"; x]
being similar.

Put

y = minfy > xjfn(y) 2 fxn � "; xn + "gg < x+ ":

In this way, fn([x; y]) equals either [xn � "; xn] or [xn; xn + "]: Put J 00 =
[x; y] and J 0i = f

i(J 00) for 1 � i � n: Then the intervals (J 00; :::; J 0n) are suitable
because J 0i � Ji � [xi � "; xi + "] for 0 � i � n � 1 and J�n contains either
xn � " or xn + ": This ends the induction.�

Lemma 3.6.2: Let f : [a; b]! [a; b] be a mixing interval map such that a

is a non accessible �xed point. Let 0 < " < (b�a)=2. Then there exists � > 0
such that, for all x 2 [a; a+ �] and all n � 0, there exist closed subintervals
J0; :::; Jn satisfying
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� f(Ji) = Ji+1 for 0 � i � n� 1,

� J0 � [a+ �; b� �],

� Ji � [f i(x)� "; f i(x) + "] for 0 � i � n,

� there exists 0 � i � n such that jJij � "=4.

Proof: By continuity of f , there exists � > 0 such that f(y) < a + " for

all a � y � a+ �: By transitivity, f([a; a+ "]) 6� [a; a+ "] thus there exists z
2 (a; a + "] such that f(z)� a+". Moreover there exists a �xed point c such
that a < c < minfa; a + �; a + "=2g, let � = c � a: Note that a + " < b � �
because � < "=2 < (b � a)=4: Let K = [c; a + "], one has c; z 2 K thus by

connectedness f(K) � K:
Let x 2 [a; a + �] = [a; c] and n � 0, write xk = fk(x) for all k � 0: Let

0 � m � n be the greatest integer such that x0; :::; xm 2 [a, c]. Note that
K � [xi � "; xi + "] for all 0 � i � m. Chain of m intervals (K; :::;K), we

get subintervals J0; :::; Jm such that Jm = K, Ji � K and f(Ji) = Ji+1 for

0 � i � m� 1. If m = n then the proof is �nished because the length of K

is a+ "� c > "=2. If m < n then xm+1 > c by choice of m and

xm+1 = f(xm) < a + " by choice of c < a + �; hence xm+1 2 K. Since
jKj � "=2, the set K contains either xm+1�"=4 or xm+1+"=4: Then Lemma
3.6.1 applies and gives intervals J 0m+1; :::; J

0
n satisfying

�J 0m+1 � K,

�f(J 0i) = Ji+1 for m+ 1 � i � n� 1,

�xi 2 J 0i for m+ 1 � i � n,

�J 0i � [xi � "=4; xi + "=4],

there existsm+1 � i � n such that the interval J 0i contains either xi�"=4
or xi + "=4, thus the length of J 0i is at least "=4.
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(J0; :::; Jm = K; J 0m+1) is a chain of intervals, thus there is subintervals

J 00; :::; J
0
m such that J

0
i � Ji; f(J 0i) = f(J 0i+1) for 0 � i � m� 1 and f(J 0m) =

J 0m+1: The sequence (J
0
0; :::; J

0
n) satis�es the required properties.

Lemma 3.6.3: Let f : I ! I be an interval map and I0 a subinterval

of I. Suppose that for every non degenerate subinterval J there exists an

integer N such that for all n � N , fn(J) � I0. Then for every " > 0 there
exists an integer N such that, for all subintervals J of length at least " and

all n � N , one has fn(J) � I0.

Proof: Write I = [a; b]: Let p be an integer such that (b � a)=p < "=2.

For 0 � k � p�1, put Jk = (a+ k(b�a)
p
; a+ (k+1)(b�a)

p
): By assumption, for all

0 � k � p�1 there exists an integerNk such that for all n � Nk; fn(Jk) � I0.
Put N = maxfN0; :::; Np�1g: Let J be a subinterval of length at least "; it
contains an interval Jk for some k, thus for all n � N; fn(J) � I0:�

Theorem 3.6.4 (Blokh): If f : I ! I is a mixing interval map, then

it satis�es the speci�cation property.

Proof: First notice that if f 2 has the speci�cation property then so has

f by continuity; in addition, if f is mixing then f 2 is mixing too (Theorem

3.1.14). Therefore, we can suppose that the non accessible endpoints are

�xed points, even if we may consider f 2 instead of f .

Let 0 < " < jIj =4 and write I = [a; b]. If both a and b are accessible,

put I0 = [a; b]. Otherwise, consider � > 0 the real given by Lemma 3.6.2 and

put either I0 = [a + �; b] or I0 = [a; b � �] or I0 = [a + �; b � �] depending
on a or b or both being non accessible �xed points (if both a and b are non

accessible, taker the smaller of the two). By assumption f is mixing thus,

according to the choice of I0; for every non degenerate subinterval J there

exists an integer N such that for all n � N; fn(J) � I0. Let N denote the
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integer given by Lemma 3.6.3 for "=4, if J is a subinterval with jJ j � "=4
then for all n � N , fn(J) � I0:
If J0; :::; Jk are intervals satisfying f(Ji) = Ji+1 for 0 � i � n � 1 and if

jJjj � "=4 for some j then

8n � N; fn(Jk) � I0 ; (4:1)

This is due to the fact that fn(Jk) = fn+k�j(Jj) and n+ k � j � N:
Let x 2 I and n � 0. Then there exist subintervals J0; :::; Jn such that:

�J0 � I;

�Ji � [f i(x)� "; f i(x) + "] for 0 � i � n,

(6.2)

�f(Ji) = Ji+1 for all 0 � i � n� 1,

�there exists 0 � i � n such that jJij � "=4.

We split the proof of (6.2) depending on x 2 I0 or not. If x 2 I0, then
either x� " 2 I0 or x+ " 2 I0, and the subintervals J0; :::; Jn are obtained by
applying Lemma 3.4.1. If a is not accessible and if x 2 [a; a+ �] then Lemma
3.6.2 gives the suitable subintervals because J0 � [a+ �; b� �] � I0 and one
of the Ji�s has a length at least "=4. The same is true if x 2 [b� "; b] with b
a non accessible endpoint.

Now we show the following property by induction on p: Let x1; :::; xp be

points of I and m1 � n1 < m2 � n2 < ::: < mp � np integers satisfying

mi+1 � ni � N for all 1 � i � p � 1. Then there exist closed intervals
Jm1 ; Jm1+1; :::; Jnp such that

�Jm1 � I0,

�f(Ji) = Ji+1 for all m1 � i � np�1, (6.3)
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�Ji � [f i(xk)� "; f i(xk) + "] for all 1 � k � p and mk � i � nk,

�fn(Jnp) � I0 for all n � N:

Case p = 1: we apply (6.2) with x = fm1(x1) and n = n1 �m1; the last

condition is reached thanks to Equation (3.1).

Suppose that the property is true at rank p�1 and write Jm1 ; :::; Jnp�1 the

corresponding intervals. We apply (3.2) with x = fmp(xp) and n = np �mp

and we call the resulting intervals J 0mp
; :::; J 0np : According to Equation (3.1),

fn(J�np) � I0 for all n � N: Put

Ji = f
i�np�1(Jnp�1) for all np�1 < i � mp:

By assumption, mp � np�1 � N; thus Jmp = f
mp�np�1(Jnb�1) � I0 � J 0mp

by Equation (3.1). So (Jm1 ; :::; Jmp�1 ; J
0
mp
) is a chain of intervals and we

can restrict the intervals Jm1 ; ::; Jnp�1 to intervals J
0
m1
; :::; J 0np�1 such that

f(J 0i) = f(J
0
i+1) for m1 � i � mp�1: Then the sequence J 0m1

; :::; J 0np satis�es

(6.3).

It is now easy to prove that f has the speci�cation property. Let x1; :::; xp
be points of I and m1 � n1 < m2 � n2 < ::: < mp � np integers satisfying
mi+1 � ni � N for 1 � i � p � 1: Let q be an integer greater than or equal
to np �m1 + N: We build the intervals Jm1 ; :::; Jnp satisfying (6.3). For all

n � N; fn(Jnp) � I0; thus f q(Jm1) = f q�np+m1(Jnp) � I0 � Jm1 : There

exists a point x 2 Jm1 such that f
q(x) = x. Put y = f q�m1(x) so that

fm1(y) = x 2 Jm1 : We have f
q(y) = y and

81 � k � p; 8mk � i � nk; f i(y) 2 Ji[f i(xk)� "; f i(xk) + "]

it is exactly the speci�cation property.�

Remark 3.6.5: The speci�cation property implies mixing [60], thus these
two notions are equivalent for interval maps.
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3.7 Blending and Transitivity

In [35] Cranell suggests blending as an alternative of transitivity hypothesis in

Devaney�s de�nition of chaos. Blending is also a purely topological condition

as transitivity.

De�nition 3.7.1: Consider the continuous f : X ! X on a metric

space X. Then f is said to be a strongly blending map if for every non-

empty open sets U; V � X 9n > 0 such that fn(U) \ fn(V ) contains an
open set.

Also f is said to be a weakly blending map if for every non-empty open

sets U; V � X 9n > 0 such that fn(U) \ fn(V ) 6= �:

Now we will give two main theorems that give a relation between blending

(strong and weak) with topological transitivity. The �rst theorem is valid for

any subset of Rn and its proof will be given. On the other hand the second
theorem is valid only for compact spaces in the real line. Its proof is omitted

and can be found in [35]:

Theorem 3.7.2: Consider the continuous map f : X � Rn ! X and

let f has dense periodic points. If f is strongly blending then f is transitive.

Proof: Consider two non empty open subsets U; V � X: Then 9n > 0
such that M � fn(U) \ fn(V ); where M is an open set in X: Now let

Y := f�n(M) \ V: Then since f is a continuous map and Y is also open

(as intersection of two open sets) we can choose a periodic point q in Y

with period m > n: But then fn(q) 2 M and there exist y 2 U such that

fn(q) = fn(y): Finally we have fm(y) = fm�n(fn(q)) = fm(q) = q and so

q 2 fm(U) \ V 6= � and the theorem is proved.

Before giving the second theorem we will de�ne the repelling �xed point.
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De�nition 3.7.3: Consider the continuous and di¤erentiable map f :

X ! X and let p 2 X to be a �xed point for the map f . Then p is said to

be a repelling �xed point for the map f if jf 0(p)j > 1.

Theorem 3.7.4: Let f : I ! I be a continuous map on the compact

interval I. If f has a repelling �xed point and f is also transitive then f is

weakly blending.

Proof: see [35]

Remark 3.7.5: The converse of theorem 3:7:2 does not hold since there
exist transitive maps without being strongly blending.

Example 3.7.6: Consider the map f : S1 ! S1 de�ned by f(�) =

�+ k, where k
�
is an irrational number. Then f is transitive but not strongly

blending (also f is not weakly blending).

Remark 3.7.7: The converse of theorem 3:7:4 is also not true since

there exist weakly blending maps without being transitive.

Example 3.7.8: Let the map F be the odd extension of the Tent map
in [�1; 1] i.e.

F (x) =

8><>:
�(2x� 2) ; �1 � x � �1

2

2x ; �1
2
< x < 1

2

2� 2x ; 1
2
� x � 1
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Figure 3.7.1:F (x)

then F is not transitive because the interval (0; 1) is not mapped onto

any subinterval of (�1; 0) :
But it is weakly blending since every open subinterval of [�1; 1] eventually

maps onto another subinterval which contains the �xed point of F which is

located at the origin.

3.8 Lyapunov Exponent and Sensitivity

Recall that the Lyapunov exponent �(x) of f at x is de�ned by �(x) =

limn!1
1
n
ln j(fn)0(x)j; if the limit exists. To �nd a formula that is more

tractable, notice that

�(x) = lim
n!1

1

n
ln j(fn)0(x)j
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= lim
n!1

1

n
ln jf 0(fn�1(x))�(fn�1)0(x)j; by the chain rule

= lim
n!1

1

n
(ln jf 0(xn�1)j+ lnj(fn�1)0(x)j)

= lim
n!1

1

n
(ln jf 0(xn�1)j+ lnjf 0(fn�2(x))�(fn�2)0(x)j); by the chain rule again

= lim
n!1

1

n
(ln jf 0(xn�1)j+ lnjf 0(xn�2)j+ lnj(fn�2)0(x)j)

...

= lim
n!1

n�1X
k=0

lnjf 0(xk)j; (8.1)

if the limit exists. There are examples of continuous functions for which

the limit does not necessarily exist for all x (or for any x, for that matter) in

the domain of f , so that the Lyapunov exponent does not necessarily exist

for such x: In fact, Tent is such a function, since T 0(1
2
) does not exist. In

some de�nitions, a function f is considered chaotic if the limit exists for a

dense set of x in the domain of f , and if for these values of x, the Lyapunov

exponent of f is positive. We will say f has a positive Lyapunov exponent

(PLE) if �(x) exists for a dense set of x and if �(x) > 0 for all x in the

domain of f such that �(x) exists. Moreover, f is PLE chaotic if f has a

positive Lyapunov exponent.

Example 3.8.1: Tent map has positive Lyapunov exponent.

Let x 2 [0; 1]:
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T 0(x) =

(
2 ; 0 < x < 1

2

�2 ; 1
2
< x < 1

So jT 0(xk)j = 2 if T 0(xk) exists: Thus; if �(x) exists;

�(x) = lim
n!1

1

n

n�1X
k=0

ln jT 0(xk)j

= lim
n!1

1

n

n�1X
k=0

ln(2)

= lim
n!1

1

n
(n)(ln(2))

= lim
n!1

ln(2)

= ln(2)

and ln(2) > 0. Now it only remains to show that the Lyapunov exponent

actually exists for a dense set of values in the domain of T . But if x is

irrational, then T n(x) 6= 1
2
, or 1 (the only possible values where the derivative

of T fails to exist) for any positive integer n, so �(x) exists. The set of

irrational numbers is dense in [0, 1], and thus, T has PLE.

Example 3.8.2: USDIC does not imply PLE (and therefore PSDIC does
not imply PLE).

Let F : [0;1)! [0;1) be de�ned by F (x) = (
p
x+ 1)2
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Figure 3.8.1:F (x) = (
p
x+ 1)2

This function and the following proof are from Pennings in [66],[59] :

First we will show that F has USDIC.

By an induction argument we will show that F n(x) = (
p
x + n)2 for all

positive integers n:

Base case: n = 1

Then F n(x) = F 1(x) = (
p
x+ 1)2:

Now assume that F n(x) = (
p
x+n)2 for all n such that 1 � n � k, where

k is an arbitrary positive integer. Consider the case n = k + 1:

F n(x) = F k+1(x) = F (F k(x))

= F ((
p
x+ k)2); by the inductive hypothesis

= (

q
(
p
x+ k)2 + 1)2
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= (
p
x+ k + 1)2

Thus, by induction, for all positive integers n,

F n(x) = (
p
x+ n)2: (8:1)

Let x 2 [0;1), and let � > 0 be arbitrary. Then by (8.2),

jF n(x)� F n(x+ �)j = j(
p
x+ n)2 � (

p
x+ � + n)2j

= j2n
p
x� � � 2n

p
x+ �j

= � + 2n(
p
x+ � �

p
x)

As n increases to in�nity, so will �+2n(
p
x+��

p
x) = jF n(x)�F n(x+�)j,

and thus jF n(x)�F n(x+�)j > " for a large enough n, regardless of the choice
of x and ". Thus, F has USDIC.

Now we will show that F does not have PLE.

For all x 2 [0;1),

F 0(x) = 2(
p
x+ 1)�1

2
� 1p
x

=

p
x+ 1p
x

:

By (8.1), xk = F k(x0) = (
p
x0+k)

2; so we have
p
xk =

p
x0+k: Therefore,

F 0(xk) =

p
xk + 1p
xk

=

p
x0 + k + 1p
x0 + k

:

Thus,
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n�1X
k=0

ln jF 0(xk)j =
n�1X
k=0

ln

����px0 + k + 1p
x0 + k

����
= ln(

p
x0 + 1p
x0

) + ln(

p
x0 + 2p
x0 + 1

) + :::+ ln(

p
x0 + np

x0 + n� 1
)

= (ln(
p
x0 + 1)� ln(

p
x0)) + (ln(

p
x0 + 2)� ln(

p
x0 + 1)) + :::

+(ln(
p
x0 + n)� ln(

p
x0 + n� 1))

= ln(
p
x0 + n)� ln(

p
x0) (8.2)

Therefore,

�(x0) = lim
n!1

1

n

n�1X
k=0

ln jF 0(xk)j

= lim
n!1

(ln(
p
x0 + n)� ln(

p
x0))

n

= lim
n!1

1p
x0+n

n

= 0

So the Lyapunov exponent at an arbitrary x0 is 0; and thus F does not

have PLE.

Example 3.8.3: PLE does not imply PSDIC (and thus PLE does not
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imply USDIC or ESDIC).

Proof : Let G : [0; 1]! [0; 1] as follows:

G(x) =

8>>>>><>>>>>:
0 ; x = 0

4x� 3(2n�1
2n
) ; x 2

�
2n�1
2n
; 2

n+2�3
2n+2

i
; n = 0; 1; 2; :::

�2x+ 3(2n+1�1
2n+1

) ; x 2
�
2n+2�3
2n+2

; 2
n+1�1
2n+1

i
1 ; x = 1

Note thatG is de�ned so thatG0(x) = 4 for x 2 (0; 1
4
); (1

2
; 5
8
); (3

4
; 13
16
); (7

8
; 29
32
); :::

and G0(x) = �2 for x 2 (1
4
; 1
2
); (5

8
; 3
4
); (13

16
; 7
8
); ::: (G is an in�nite number of

lopsided, shrinking tents along the line y = x. )

Now consider �(x) for x 2 [0; 1] such that x is not a dyadic rational. Then

�(x) = lim
n!1

1

n
ln j(Gn)0 (x)j

= lim
n!1

1

n

n�1X
k=0

ln jG0 (xk)j

But if G0(xk) exists, then G0(xk) = 4 or �2, so ln jG0(xk)j = ln(2) or

ln(4). Thus for all x where the Lyapunov exponent exists,

� (x) = lim
n!1

1

n

n�1X
k=0

ln jG0 (xk)j

� lim
n!1

1

n

n�1X
k=0

ln (2)

= lim
n!1

1

n
:n ln (2)

= ln (2)
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> 0

So clearly �(x) > 0 wherever �(x) exists. Now we must show that �(x)

does exist for a dense set of x 2 [0; 1]: The only points where G0 fails to
exist are the points x = 2n�1

2n
or x = 2n+2�3

2n+2
for any positive integer n. Thus,

clearly when x is not a dyadic rational, Gn(x) will never be of the form 2n�1
2n

or 2
n+2�3
2n+2

for any n, so G0(xk) will always exist, which implies that �(x) exists

and that G has PLE.

Next we will show that x � G(x); and that then G does not have PSDIC.
The function G is a piecewise linear function, so the only possible local

extrema are at the endpoints of the intervals on which G is piecewise de�ned.

Since G(x) is increasing for x 2 (2n�1
2n
; 2

n+2�3
2n+2

); n = 0; 1; 2; :::(the slope on

these intervals is 4) and decreasing for x 2 (2n+2�3
2n+2

; 2
n+1�1
2n+1

); n = 0; 1; 2; :::(the

slope on these intervals is -2), clearly the local minima occur at numbers of

the form x = 2n+1�1
2n+1

; n = �1; 0; 1; 2; ::::
Let x = 2n+1�1

2n+1
for an arbitrary n = �1; 0; 1; 2; :::: If n = �1; then x = 0

and G(x) = 0 = x:

For all other values of n;

G(x) = G(
2n+1 � 1
2n+1

) = �2(2
n+1 � 1
2n+1

) + 3(
2n+1 � 1
2n+1

) =
2n+1 � 1
2n+1

= x

Thus, at the local minima, G(x) = x; and therefore G(x) � x for all other
values of x 2 [0; 1]: So we have shown that for any x 2 [0; 1]; x � G(x): Note
that this implies that x � Gn(x) for all positive integers n:
Now we will show that G does not have PSDIC by showing that G does

not have the requirements for PSDIC at x = 1: Choose any "; with 0 < " < 1:

Let 0 < � < ": Then if j1� yj < � and y 2 [0; 1]; we must have y 2 (1� �; 1]:
Also, for any positive integer n, we have y � Gn(y) by the above argument
and Gn(1) = 1 by the de�nition of G: Thus,
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jGn(1)�Gn(y)j = j1�Gn(y)j

� j1� yj

< �

< "

So there does not exist an y and a positive integer n such that j1� yj < �
and

jGn(1)�Gn(y)j > ":

Thus, G does not have PSDIC at 1, and so G does not have PSDIC.

In this example, G has a positive Lyapunov exponent at a dense set of x

in the domain but fails to have PSDIC at only one element in the domain,

namely x = 1:

3.9 Expansivity and Sensitivity

Expansivity is a condition related directly with sensitive dependence on ini-

tial conditions but these two conditions are clearly not equivalent as we will

explain later on.

De�nition 3.9.1: Consider a metric space X equipped with the metric

d and the map f : X ! X. Then f is said to be expansive if there exists a

positive number c > 0 such that if x; y 2 X and x 6= y, then 9n > 0 such
that d(fn(x); fn(y)) � c. The positive number c is is called an expansive

constant for f:
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Remark 3.9.2: Clearly from the de�nition 3:9:1 expansivity implies

sensitivity because in expansivity all nearby points of x separate by at least

c (in sensitivity condition we need only one point to have this property). If a

map is expansive then any two orbits become at least a �xed distance apart.

On the other hand trivially sensitivity does not imply expansivity.

3.10 Shared Periodic Orbit and Transitivity

A function f has a shared periodic orbit if for every pair of non-empty open

intervals U and V in X, there is a periodic point p 2 U such that fn(p) 2 V
for some positive integer n.

Example 3.10.1: Tent map has a shared periodic orbit.

Let U and V be non-empty open intervals in [0; 1]: There exist positive

integers k and n such that [ k
2n
; k+1
2n
] � U: Similarly, there exist positive in-

tegers l and m; with m > n; such that [ l
2m
; l+1
2m
] � V: We can construct a

sequence s = x0x1x2::: in a manner similar to the one in example 3.1.18 by

specifying x0; x1; x2; :::; xa+b such that h(x�) = s for some x� 2 [0; 1] and

T a(x�) 2 [ k
2n
;
k + 1

2n
] � U; T a+b(x�) 2 [ l

2m
;
l + 1

2m
] � V

where h is as de�ned in (0.1). If we then let s = x0x1x2::: xa+b; x� will be

periodic. Thus, T has a shared periodic orbit.

Proposition 3.10.2: A shared periodic orbit implies transitivity.
Proof: Let f : X ! X have a shared periodic orbit, and let U and V

be non-empty open intervals in X. Then by the de�nition of shared periodic
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orbit, there is a periodic point p 2 U and a positive integer n such that

fn(p) 2 V: Thus since fn(p) 2 fn(U); we have fn(p) 2 (fn(U) \ V ); which
implies fn(U) \ V 6= �; so f is transitive.

Proposition 3.10.3: Transitivity implies a shared periodic orbit.

Proof : Let f : X ! X be transitive, and let U and V be non-empty open

intervals in X. By the de�nition of transitivity, there exists x 2 U such that
fn(x) 2 V for some positive integer n. Since V is an open set, there exists

an " > 0 such that

(fn(x)� "; fn(x) + ") � V:

By hypothesis f is continuous, which implies that fn is continuous. By the

de�nition of continuity, there exists some � > 0 such that if jx� yj < �; then
jfn(x)� fn(y)j < "; which implies that

fn(y) 2 (fn(x)� "; fn(x) + ") � V:

Let W � ((x � �; x + �) \ U): Then W is open. Since f is transitive, f has

a dense set of periodic points. So there exists a periodic point p 2 W: But

fn(W ) � (fn(x)� "; fn(x) + ") � V;

so fn(p) 2 V . Since W � U; we know that p 2 U: Thus, we have found a
periodic point p such that p 2 U and fn(p) 2 V: Therefore, f has a shared
periodic orbit.

3.11 Mixing and Sensitivity

Proposition 3.11.1: Consider a metric space X equipped with the metric

d and the continuous map f : X ! X. If f is a mixing map then it is
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sensitive.

Proof: Consider a positive number d and two points say p; q 2 X such

that d(p; q) > 4d: Consider also the balls Bd(p) and Bd(q) both with radius d

and centers p and q respectively. Now we take a point x 2 X and we choose

an open neighbourhood of x say N"(x) for some " > 0: Now since f is a

mixing map then 9n1; n2 2 N such that

fn(N"(x)) \Bd(p) 6= �8n > n1

and

fn(N"(x)) \Bd(q) 6= � 8n > n2:

If we choose n > maxfn1; n2g then 9y1; y2 2 N"(x) such that

fn(y1) 2 Bd(p)

and

fn(y2) 2 Bd(q):

Then we have

d(fn(y1); f
n(y2)) � 2�:

Also from the triangular inequality we get

(fn(y2); f
n(x)) � � or d(fn(y1); f

n(x)) � �:

So f is sensitive with sensitivity constant 4�:
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3.12 Summary

The following graphs summarize the results in chapter 3

Transitivity ����������������������! Dense periodic pointswwwwwwwwwww�

~wwwwwwwwwww
USDIC  ����������������������� Shared periodic orpit

Transitivity +

periodic point of

odd period di¤erent from 1

�����������������! ����������������� Mixing

wwwwwwwww�

~wwwwwwwww

wwwwwwwww�

~wwwwwwwww
Totally transitive �������������������! ������������������� weakly mixing

PSDICwwww�
USDICwwww�
ESDIC

Specification ����������������! ����������������
Mixing
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Expansivity
����������!

Sencitivity

Trasitivity +

repelling

fixed point

���������! Weakly

blending

Blending +

dense

periodic point

����������! Trasitivity
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4 Relationships Between De�nitions of Chaos

when X=I

In this chapter we discuss the mutual relations between the notions of chaos

described in the chapter two for the special case of interval maps. In fact,

throughout the present section we consider continuous maps f : I ! I from

a nontrivial compact interval I = [a; b]; a < b; into itself. The main results

of this chapter say that in this case B/C-chaos and D-chaos and most other

forms are equivalent while, on the other hand, B/C-chaos and D-chaos are

su¢ cient for L/Y-chaos.

4.1 Devaney versus Block-Coppel

Recall that a continuous map f : I ! I on a nontrivial compact interval I is

t-chaotic if and only if one of the following equivalent conditions is satis-

�ed:

(i) fm is turbulent for some m 2 N;

(ii) fm is strictly turbulent for some m 2 N;

(iii) f has a periodic point whose period is not a power of 2.

Three more results are needed in order to reach the goals of this section:

Proposition 4.1.1: f is L/Y-chaotic if and only if not every point in I
is approximately periodic.
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Proof: See [4, p.145]).

Lemma 4.1.2: f is B/C-chaotic if and only if there exists a c 2 I such
that !(c; f) contains a periodic orbit as a proper subset.

Proof : See [4, VI Proposition 6]).

Lemma 4.1.3: Let J and K be two compact subintervals of I having the

property K � f(J). Then there exists a compact subinterval L of J such
that f(L) = K and that f maps the endpoints of L onto the endpoints of

K.

Proof: Let K = [a; b] for two points a; b 2 I and let c be the largest point
in J with f(c) = a: If there exists an x 2 J; x > c; with f(x) = b; let d be
the smallest x with this property. Then with L := [c; d] the claim follows.

On the other hand, if there exists an x 2 J; x < c, with f(x) = b we de�ne
c0 as the largest x with this property. Let d0 be the smallest x 2 (c0; c](� J)
satisfying f(x) = a: Then the interval L := [c0; d0] has the claimed property

and the proof of the lemma is complete.

Theorem 4.1.4[44] : A continuous map f : I ! I on an interval I is

D-chaotic if and only if it is B/C-chaotic.

Proof: ) Let f be D-chaotic with compact D-chaotic set Y � I: Then Y
is in�nite since f jY has sensitive dependence on initial conditions. Further-
more, since f jY is transitive there is a c 2 Y with !(c; f) = Y; and because

of the relation P (f jY ) = Y the map f jY has a periodic orbit. As a �nite
set this periodic orbit is a proper subset of Y = !(c; f), and this implies (by

Lemma 4.1.3) that f is B/C-chaotic.
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( Now suppose f is B/C-chaotic. Then the map fm is strongly turbulent

for some m 2 N , i.e. there exist two disjoint compact subintervals X0 and

X1 of I with the property that for g := fm we have

X0 [X1 � g(X0) \ g(X1): (4:1)

The idea of proceeding from here is to �rst derive from (4.1) the existence

of a compact g� invariant subset X of X0[X1 with the property that the
map gjX : X ! X is semi-conjugate to the shift via a continuous surjection

s : X !
P
and then to show that there exists a compact g � invariant

subset Z of X on which g is D-chaotic. We carry out this program in 5

steps.

Step 1 : Construction of X and s: Starting with the above X0 and X1

and using mathematical induction, for each � = (a1; a2; :::) 2
P
Lemma 4.1.3

yields a sequence of compact, pairwise disjoint intervalsXa1a2:::ak ; (a1; a2; :::; ak) 2
f0; 1gk; k � 1 in X0 [X1 having the following properties:

Xa1a2:::ak � Xa1a2:::ak�1 ; g(Xa1a2:::ak) = Xa2a3:::ak 4.2

and g maps endpoints of Xa1a2:::ak onto endpoints of Xa2a3:::ak : Then for

each � = (a1; a2; :::) 2
P
the set

X� :=
1T
k=1

Xa1:::ak (4:3)

is either a singleton or a nontrivial compact interval. Furthermore we

have

X� \X� = � for all �; � 2
P
; � 6= � (4:4)
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since the sets Xa1a2:::ak ; (a1; a2; :::; ak) 2 f0; 1gk; are pairwise disjoint and

g(X�) = X�(�) for all � 2
P
: (4:5)

Next we de�ne the set

X 0 =
S
�2�

X� (4:6)

which turns out to be strongly g � invariant and compact. Also the set

X := fx 2 I j x is an endpoint of X for some � 2 �g

is compact (even if X� = fxg for some x we call x an endpoint of X�

). From (4.2) and (4.5) we conclude that for any � 2 � the map g maps
the endpoints of X� onto the endpoints of X�(�) and that X is strongly

g � invariant. On X we de�ne the map

s : X ! �; x 7! � if x 2 X�:

Obviously, this map is well de�ned, continuous and onto and each point

of � is the s � image of at most two points of X. Finally, because of (4.5)
and the de�nition of s we have

s � gjX = � � s on X: (4:7)

Step 2 : Construction of Z: For any � 2 � the set X� de�ned in (4.3) is

a nonempty compact interval. Since the X��s are pairwise disjoint (see [4])
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there exist at most countably many ��s in � such that X� is not a singleton.

Therefore the set

R := fx 2 X j X� = fxg for some � 2 �g

is nonempty and consists of all but countably many points of X. Because

of (4.5) the set R is g � invariant and the set

Z := R

and the map gjZ : Z ! Z are well de�ned.

Step 3 : Transitivity of gjZ : Let U be an arbitrary open nonempty subset
of Z. Then there exists a point x 2 U \ R and some � = (a1; a2; :::) 2 �
with X� = fxg.
Because of de�nition (4.3) of X and the openness of U in Z there exists

a k 2 N with

Z \Xa1a2:::ak � U:

Therefore, in order to prove the transitivity of gjZ it su¢ ces to prove the
relation

gk(Z \Xa1a2:::ak) = Z: (4:8)

Since Z = R and since the set Z \ Xa1a2:::ak is compact, it even su¢ ces

to �nd a gk-pre-image of an arbitrary point y 2 R in the set Z \Xa1a2:::ak .

Due to the de�nition of R, for any y 2 R there exists a � = (b1; b2; :::) 2 �
with fyg = X� . With the aid of this we de�ne
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 := (a1; a2; :::; ak; b1; b2; :::) 2 �

and use (4.5) to get the relation

gk(X
) = X� = fyg: (4:9)

If X
 consists of a single point we get the inclusion X
 � Z and the claim
(4.8) is proved, since X
 is a subset of Xa1a2:::ak . If, on the other hand, X


is a nontrivial interval then at least one of its endpoints is contained in Z:

This can be shown as follows: For any n 2 N there exists (because of (4.3))

a number mn 2 N with

Xa1a2:::akb1b2:::bmn � fx 2 I j dist(x;X) <
1

n
g; (4:10)

and since the set

f(a1; a2; :::; ak; b1; b2; :::; bmn ; �; �; :::) 2 �j� 2 f0; 1gg

is uncountable we can �nd a point 
n in this set such that X
n = fyng.
By (4.4) the sets X
 and X
n are disjoint and by (4.10) the distance of

the point yn from at least one of the endpoints of X
 is less than 1
n
(since

yn 2 Xa1a2:::akb1b2:::bmn). Because the relation X
n � R holds for all n 2 N ,
the sequence (yn)n 2 N in R converges, to one of the endpoints of X
. On

the other hand, because of Z = R this endpoint is contained in Z and it

is mapped via gk to y according to (4.9). In both cases we thus can �nd a

gk-preimage of the point y in Z \Xa1a2:::ak , and this proves claim (4.8).

Step 4 : P (gjZ) = Z: Let U again be an arbitrary open nonempty set in
Z and x a point in U \ R with fxg = X� for some � = (a1; a2; :::) 2 �: As
in the proof of Step 3, given any n 2 N there is an mn 2 N with
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Xa1a2:::amn � fx 2 I j dist(x;X�) <
1

n
g: (4:11)

We now consider the periodic point


n := (a1; a2; :::; amn ; :::) 2 �

and notice that because of �mn(
n) = 
n and (4.5) we get g
mn(X
n) =

X
n. Furthermore, the two endpoints of X
n are periodic with respect to g,

since gmn maps the endpoints ofX
n onto the endpoints of g
mn(X
n)(= X
n):

In caseX
n is a nontrivial interval then at least one of its (periodic) endpoints

is contained inZ: This can be seen as in the previous Step 3. So in any case,

for any n 2 N we get a g-periodic point xn 2 X
n \ Z and the sequence

(xn)n2N converges to x because of X
n � Xa1:::amn and (4.11). This implies

the relation x 2 P (gjZ) and completes the proof of Step 4.

Step 5 : Conclusion: The set Z is in�nite (because R is in�nite), and

therefore the map g is D-chaotic on Z, then f is D � chaotic on Y :=Sn�1
i=0 f

i(Z): This completes the proof of the Theorem .�

4.2 Entropy versus Li-Yorke

Theorem 4.2.1[70]: On intervals, the entropy type of chaos implies the Li
and Yorke chaos, and the converse is not true.

Proof: Let us assume that fm has a horseshoe ( We say that a continuous

map g : I ! I has a horseshoe if there exist a < c < b in I such that
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[a; b] � g([a; c]) \g([c; b])): For some m � 1; so fm has a point of period 3,
thus there are some points y < r < s < z such that: [y; z] � f 2m([y; r]) and
[y; z] � f 2m([s; z]) (see section two in chapter two). We write

I0 := [y; r]; I1 := [s; z] and g := f 2m:

We claim: 8n � 1;8u0; u1; :::; un 2 f0; 1g, there exists a non-empty com-
pact interval Iu0u1:::un � Iu0:::un�1 such that:

g(Iu0:::un) = Iu1:::un:

We prove this claim by induction on n: For n = 1, we have: Iu1 � g(Iu0),
so, by lemma 2.2.2, there exists a compact interval Iu0u1 � Iu0 such that

g(Iu0u1) = Iu1 , and then necessarily Iu0u1 is non-empty. Let us then assume

that our claim is true until an integer n � 1:
By the induction hypothesis: Iu1:::un+1 � Iu1:::un = g(Iu0:::un); so there

exists a compact subinterval Iu0:::un+1 � Iu0:::un such that

g(Iu0:::un+1) = Iu1:::un+1 ;

and necessarily Iu0:::un+1 is non-empty, which shows that the claim is true for

n+ 1, and achieves the proof by induction.

We then set, for u 2 f0; 1gN;

Iu :=
T
n�0 Iu0:::un :

Iu is non-empty, otherwise, because of the compacticity of [y; z], there

would exist

N � 0 such that

TN
n=0 Iu0:::un = Iu0:::uN = �;
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which is not.

Let us remark that, for all u 2 f0; 1gN; and for all n � 0;

(x 2 Iu0:::un) =) (8k 2 f0; :::; ng; gk(x) 2 Iuk):

Indeed, for k 2 f0; :::; ng;

gk(x) 2 gk(Iu0:::un) = Iuk:::un � Iuk :

We then easily see that if x 2 Iu; for all n � 0; gn(x) 2 Iun : This implies in
particular that for u; v 2 f0; 1gN; (u 6= v) =) (Iu\Iv = �):Moreover, Iu; as
intersection of compact intervals, is a single point or an interval [c; d]; c < d:

Let C := fu 2 f0; 1gN : l(Iu) := length(Iu) > 0g; C =
S
n�0Cn; where

Cn := fu 2 f0; 1gN : l(Iu) > 1=(n+ 1)g:

Taking u1; u2; :::; uk distinct elements of Cn; since Iu1 [ ::: [ Iuk � [y; z];
we have:

z � y � l(Iu1 [ ::: [ Iuk) = l(Iu1) + :::+ l(Iuk) > k=(n+ 1);

i.e.

k < (n+ 1)(z � y);

meaning that Cn is �nite, and then C is countable. For u 2 f0; 1gNnC,
we then write Iu =: fxug; and �xing a 2 f0; 1gNnC; we set:

S := fxu; u := u(b) := a0b0a0a1b0b1a0a1a2b0b1b2::: =2 C; b 2 f0; 1gNg:

We will show that S is a scrambled set of f: Since f0; 1gN is uncountable,
since b 2 f0; 1gN 7! u(b) 2 f0; 1gN is injective,since C is countable, and since
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u 2 f0; 1gNnC � xu 2 [y; z] is injective, S is uncountable.
Now let xu; xv 2 S; xu 6= xv; i.e. there exists i � 0 such that bi 6= b0i;

where

u =: a0b0a0a1b0b1a0a1a2b0b1b2:::

and

v =: a0b
0
0a0a1b

0
0b
0
1a0a1a2b

0
0b
0
1b
0
2::::

Since for all n � 0 and k 2 f0; :::; ng;

u2(1+2+:::+n)+k = un(n+1)+k = ak = vn(n+1)+k;

u2(1+2+:::+n)+n+1+k = u(n+1)2+k = bk

and

v(n+1)2+k = b
0
k

we have, for all n � i;

g(n+1)
2+i(xu) 2 Ibi and g(n+1)

2+i(xv) 2 Ib0i ;

so

jg(n+1)2+i(xu)� g(n+1)
2+i(xv)j � s� r > 0:

From (jg(n+1)2+i(xu) � g(n+1)
2+i(xv)j)n�0; we now can extract a convergent

subsequence, showing that:

lim supn!1 jfn(xu)� fn(xv)j � s� r > 0:

Let us now assume that � := lim infn!1 jfn(xu)� fn(xv)j > 0 (� exists
because the sequence is bounded). Since a =2 C, Ia is a point, then there
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exists k � 0 such that l(Ia0:::ak) =: � < � . We have, for all n � k; since

xu 2 Iu0:::un(n+1)+n ; g
n(n+1)(xu) 2 Iun(n+1):::un(n+1)+n = Ia0:::an � Ia0:::ak ;

and similarly:

gn(n+1)(xv) 2 Ia0:::ak ;

hence:

jgn(n+1)(xu)� gn(n+1)(xv)j � �:

Now, from the sequence (jgn(n+1)(xu)� gn(n+1)(xv)j)n�0; we can extract a
subsequence converging to 
, say. We have: 
 � � < �; which is absurd.
Finally,

lim infn!1 jfn(xu)� fn(xv)j = 0

and this achieves the �rst part of the proof.

For the second part we will give a counterexample later.�

4.3 Block- Coppel versus t-chaos

Proposition 4.3.1: If f non-chaotic (t - chaotic) then for any x 2 I, the
limit set !(x; f) contains a unique minimal set M ,i.e. M = !(y; f) for every

y 2 !(x; f):

Proof: See Proposition 7 in [4], chapter V I.�

Theorem 4.3.2:[4] Suppose that f : X ! X then f is BC � chaotic if
and only if f is t� chaotic:
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Proof: Suppose f is BC � chaotic; choose � 2 � so that !(�; �) = �

and x 2 ~X so that h(x) = �: If we set

L = !(x; fm)

then

h(L) = �

Thus there exists x0 2 L so that h(x0) = �: But if f were chaotic then

L0 = !(x0; fm) would be a minimal set by proposition 2.11.6 and hence

L � SR(f)

(SR(f) denote the set of all strongly recurrent points). Since h(L0) = �

and h(SR(f)) � SR(�) this yields a contradiction. Now suppose that f is
t� chaotic map. Let I0; I1 be disjoint compact subintervals such that :

I0 [ I1 � f(I0) \ f(I1):

Let Ia1a2 be a subinterval of Ia1 of minimal length such that f(Ia1a2) =

Ia2 ;where a1; a2 = 0 or 1. Proceeding inductively, let Ia1:::ak be a subinterval of

Ia1:::ak�1 of minimal length such that f(Ia1:::ak) = Ia2:::ak; where a1; :::; ak =

0 or 1: It is readily seen that

Ia1:::ak \ Ib1:::bk = � if (a1; :::; ak) 6= (b1; :::; bk):

For any in�nite sequence � = (a1; a2; :::) of 0�s and 1�s. Let I =
T1
k=1 Ia1:::ak :

Then I� either a compact interval or a single point. Moreover I� \ I� = �
if � 6= �; and hence I� is an interval for most countably many values of �:
Since f is continuous:

f(I�) =
T1
k=2 f(Ia1:::ak) =

T1
k=2 Ia2:::ak = I�(�)
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where �(�) = (a2; a3; :::): Thus if I� is a point, so also is I�(�): Let

~X =
S
�2� I�

We will show that ~X is closed, and hence compact, subset of I0 [ I1:
Suppose xn ! x, where xn 2 I�n . By restricting attention to a subsequence
we may assume that �n ! � = (a1; a2; :::):Then for any given k; I�n � Ia1;::;ak
for all large n. Thus x 2 Ia1:::ak for every k, and hence x 2 I�: Since I�\I� = �
if � 6= � , it follows that if �n ! � and �n 6= � for all large n, then any limit
point of a sequence xn 2 I�n must be an endpoint of I�: Note if I� is a point,
we consider this point to be an endpoint. Hence the set X of all endpoints of

all I� is also closed. Since Ia1:::ak was chosen of minimal length. f maps the

two endpoints of Ia1:::ak onto the two endpoint of Ia2:::ak : Therefore, if I� and

I�(�) are intervals, f maps the two endpoints of I� onto the two endpoints

of I�(�): it follows that f(X) = X: De�ne a map h of X onto � by setting

h(x) = � if x 2 I�: Then each point of � is the image of at most two points
of X ( and at most countably many points of � are the image of two points of

X). Moreover the map h is continuous. For let �k > 0 be the least distance

between any two of the 2k intervals Ia1:::ak :If x 2 I�; y 2 I� and jx� yj < �k
then d(�; �) < 2�k: Finally, since f(I�) = I�(�); we have

h � f(x) = � � h(x) for every x 2 X:�

4.4 Knudsen,Robinson,Wiggnis versus Devaney�s

By de�nition and Theorem 2.1.10 Robinson ( or Wiggnis ) and Devaney�s

chaos are equivalent if X = I: By Proposition 1:2:18 and Theorem 2:1:10

again Knudsen and Devaney�s chaos are equivalent.
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4.5 Touhey versus Devaney

Proposition 4.5.1: Let X be a metric space and f : X ! X be a mapping.

Then the following are equivalent :

[1] f is T-chaotic on X.

[2] f is D-chaotic on X.

[3] any �nite collection of non-empty open sets of X shares a periodic

orbit.

[4] any �nite collection of non-empty open sets of X shares in�nitely

many periodic orbits .[12]

Proof: We have already shown that [1] , [2] in chapter two section 6

(proposition 2.6.3). Now [1 or 2]) [3] : let N be the number of non-empty

open subsets in our collection. If N = 1; the result follows from the density

of periodic points, if N = 2 it follows from de�nition of chaotic mapping.

We proceed by induction on N: Thus assume that assertion holds for N = n:

We will show that it holds for n + 1non-empty open subsets. There is no

loss of generality to assume that the collection consists of n + 1 disjoint

subsets. If the sets are not disjoint then some pair of non-empty open subsets

intersects in an open subset. Replacing the pair by their intersection yields

a collection of n non-empty open subsets that by our induction hypothesis

shares a periodic orbit. Clearly this orbit is shared by the original collection

of n+1 subsets. Now from our disjoint collection choose a subsets and call it

V: The remaining n subsets must share a periodic orbit and like all periodic

orbits this orbit has a primitive period which we designate by M: From

these remaining n non-empty open subsets choose any subset and call it U0:

Thus we must have p 2 U0 where p is a periodic point of primitive period
M > n � 1; with the property that O+f (p) intersect each of our n subsets.
We now label each of the remaining n � 1 non-empty open subsets in the
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following manner. As we iterate the point p it �rst intersect one of the n� 1
open subsets for some value k1, of the iterate, 0 < k1 < M: Let this subset be

designated by U1 i.e. , fk1 (p) 2 U1: Continuing in this fashion we arrive at
the next iterate, fk2 (p) ; 0 < k1 < k2 < M; intersecting one of the remaining

n� 2 open subsets. This subsets is designated U2 . Eventually we will have
labeled each of the n open subsets so that fki (p) 2 Ui for all i = 0; 1; :::; n�1
where 0 = k0 < k1 < ::: < kn�1 < M: Now we de�ne another collection of

non-empty open subsets with a particularly nice property. Let W0 � Un�1:
Clearly fkn�1 (p) 2 W0: Now consider

W1 � f�[kn�1�kn�2] (W0) \ Un�2:

We claim that W1 is a non-empty open subset contained in Un�2: It is

open because it is the intersection of two open subsets and it is obviously

in Un�2 That is non-empty follows from the facts that fkn�1 (p) 2 W0 and

fkn�2 (p) 2 Un�2; and hence

fkn�2 (p) = f�[kn�1�kn�2]
�
fkn�1 (p)

�
2 f�[kn�1�kn�2] (W0) ;

which implies that fkn�2 (p) 2 W1: Also note thatW1 has the particularly

nice property that f [kn�1�kn�2] (W1) � W0: Continuing in this fashion, we

de�ne

Wi � f�[kn�i�kn�(i+1)] (Wi�1) \ Un�(i+1) for i = 1; 2; :::; n� 1:

Each Wi is again non-empty open and contained in Un�(i+1): In addition

we have the particularly nice property that

f [kn�i�kn�(i+1)] (Wi) � Wi�1 for i = 1; 2; :::; n� 1:

It is easy to �nd a periodic orbit that wends itself through our original
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collection of n + 1 non-empty open subsets, fV; U0; U1; :::; Un�1g : Since V
and Wn�1 are both open, they share a periodic orbit. Thus, there exists a

periodic point p0 2 V and a positive integer q such that f q (p0) 2 Wn�1 � U0:
But then, by our particularly nice property, the subsequent iterates of p0

must pass through all of the Ui�s.

f q (p0) = f [q+k0] (p0) 2 Wn�1 � U0

f q+k1 (p0) = f [k1�k0]
�
f [q+k0] (p0)

�
2 f [k1�k0] (Wn�1) � Wn�2 � U1

...

f q+ki (p0) = f [ki�ki�1]
�
f [q+ki�1] (p0)

�
2 f [ki�ki�1] (Wn�i) � Wn�(i+1) � Ui

...

f q+kn�1 (p0) = f [kn�1�kn�2]
�
f [q+kn�2] (p0)

�
2 f [kn�1�kn�2] (W1) � W0 = Un�1

Thus, the forward orbit of p0 , O+f (p
0) ; intersects each of V; U0; U1; :::; Un�1:

Now [1]) [3]) [4] :Assume the existence of a �nite collection fUigi=1;:::;n
of non-empty open subsets that share only a �nite number of periodic orbits.

De�ne P to be the set consisting of the union of the points in these shared

periodic orbits. Since each periodic orbit contains a �nite number of points,

the union of �nitely many such orbits must be �nite. Hence P is a �nite

set. We now de�ne another collection of non-empty open subsets fVigi=1;:::;n
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by Vi � UinP: It�s clear that each Vi � Ui: And each Vi is non-empty and
open and open since removing the �nite set of points ,P , from the open set

Ui leaves us with a non-empty open sets. Thus by ([1]) [3]) there must

be a periodic orbit shared by the collection fVigi=1;:::;n : This new orbit is

clearly not contained in P . On the other hand,this orbit obviously passes

through the original collection fUigi=1;:::;n of non-empty open subsets since
each Vi � Ui: This contradiction proves our result.
Now [4] ) [1] : If any �nite collection of non-empty open sets contained

in X shares in�nitely many periodic orbits it is clear that any pair of open

sets shares a periodic orbit.�

4.6 t-chaos versus Entropy

Proposition 4.6.1: A continuous map f : I ! I is t� chaotic if only if it
has topological entropy h(f) > 0.

Proof: If f is t-chaotic then fn is strictly turbulent for some n > 0.

Hence, by Corollary 2.13.12,

h(fn) � log 2 and h(f) � (log 2)=n:

Conversely, suppose h(f) > 0: Then in the statement of Theorem 2.13.18

we must have p > 1. Hence fn is turbulent and f is t� chaotic:�
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4.7 P-chaos versus DC-chaos, Devaney and Entropy

Theorem 4.7.1: Every P�chaotic map from a continuum to itself is chaotic
in the sense of Devaney.[22]

Theorem 4.7.2: Every P � chaotic map from a continuum to itself is

DC1.[22]

Theorem 4.7.3: Every P � chaotic map from a continuum to itself has

positive topological entropy.[22]

Proof : Let f be a P � chaotic map from a continuum X to itself.

And let Orb(p; f) and Orb (q; f) be periodic orbits with periods m and n,

respectively. Since f has the pseudo � orbit � tracing � property; for any
" > 0 with " < 1=3d(Orb(p; f); Orb(q; f)); there exists � > 0 such that each

� � pseudo� orbit is "� traced: By the transitivity of f , there exists x 2 X
such that fx; f `(x)g 2 B(p; �) and fk(x) 2 B(q; �) for some positive integers
k < `: Denote

P = (p; f(p); :::; fm�1(p))

and

Q = (x; f(x); :::; fk�1(x); q; f(q); :::; fn�1(q); fk(x); fk+1(x); :::; f `�1(x)):

And put P 0 = (` + n) � P and Q0 = m � Q: Since the length of P is m

and the length of Q is ` + n, the length m(` + n) of P 0 is equal to that of

Q0. Let A be the set of all sequences A1A2:::; where each Ai is an element

of fP 0; Q0g for i � 1: Note that each element of A is a �-pseudo-orbit for

f . Since d(P 0; Q0) > 3", any distinct elements A1A2::: and A01A
0
2::: of A are

"� traced by distinct points x and x0 satisfying

d(f i(x); f i(x0)) > " for some i � 0; respectively:
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Hence for each k �1, there exists an (km( ` + n), ")-separated set for f
with cardinality at least 2k: Therefore

h(f) = lim
k!1

1=km(`+ n) log skm(`+n)(";X)

� lim
k!1

1=km(`+ n) log 2k

= 1=m(`+ n) log 2 > 0:�

Remark 4.7.4: Not every D-chaotic map is P-chaotic.

Example 4.7.5: Let f : [0; 1] ! [0; 1] be the piecewise linear function

de�ned by

f(0) = 1=2; f(1=8) = 0; f(1=4) = 1; f(3=8) = 0;

f(5=8) = 1; f(3=4) = 0; f(7=8) = 1; f(1) = 1=2:

i.e.

f (x) =

8>>>>>>>>>>><>>>>>>>>>>>:

�4x+ 1
2
; 0 � x � 1

8

8x� 1 ; 1
8
< x � 1

4

�8x+ 3 ; 1
4
< x � 3

8

4x� 3
2

; 3
8
< x � 5

8

�8x+ 6 ; 5
8
< x � 3

4

8x� 6 ; 3
4
< x � 7

8

�4x+ 9
2
; 7

8
< x � 1
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Figure 4.7.1: The graph of f (x)

We can show that f is topologically mixing and so transitive, but it is

not P-chaotic.

Fix " > 0 with " < 4�3: Let � > 0 with � < "; x0 = 0; x1 = 1=2 + �=2 and

xi = f
i�1(x1) for each i � 2: We see that fxi : i � 0g is a � � pseudo� orbit

for f . Suppose that there exists a point x which "-traces fxi : i � 0g:
We see that x 2 [0; "), thus, f(x) 2 (1=2 � 4"; 1=2] and f 2(x) 2 (1=2 �
42"; 1=2]: There exists i0 = minfi � 2 : f i(x) � 1=2 � 3=43g: Also, there
exists i1 = minfi � 2 : xi � 1=2 + 3=43g: Let i2 = minfi0; i1g: We have
d(f i2(x); xi2) � 3=43; thus, this is a contradiction. We see that f has not

the pseudo� orbit� tracing � property:
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4.8 Martelli versus Devaney

Theorem 4.8.1: For a continuous map f : I ! I, Martelli�s and Devaney�s

notions of chaos are equivalent.

Proof : By Theorem 2.10.4 and Theorem 2.10.6 the result follows.�

4.9 Experimentalists�Chaos versus Devaney

It follows from de�nition that Devaney implies Experimentalists�chaos and

the converse is not true by example 2.1.15.

4.10 Lyapunove versus Devaney

It follows from de�nition that lyapunove implies Devaney and the converse

is not true, see example 2.1.15.

4.11 !�chaos and DC-chaos versus Entropy

Theorem 4.11.1[28]: � satis�es the following statement: There is an un-
countable !-scrambled set S such that:

T
x2s
! (x; f) 6= � (11.1)
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Lemma 4.11.2[28]: If f and p are semiconjugate, i.e. there is a continu-
ous onto map h : X ! Y such that h�f = p�h, then h(!(x; f)) = !(h(x); p)
for each x 2 X:

Theorem 4.11.3: If f is countable to one semiconjugate to p with semi-
conjugacy h : X ! Y; then p satis�es the statement in Theorem 4.11.1 which

implies that f satis�es the statement. Also we can take an !-scrambled set

in X from the preimage under h of some !-scrambled set in Y .

Proof: Since p satis�es the statement, there is an uncountable !-scrambled

set S(p) in Y with
T
y2S(p) !(y; p) 6= �: Let y0 2

T
y2S(p) !(y; p): For each

y 2 S(p); choose one point x = x(y) 2 h�1x(y) and let T = fx(y) : y 2 S(p)g:
By Lemma 4.11.2, !(x; f)\h�1(y0) 6= � for every x 2 T: Since h is countable
to one, there exists x0 2 h�1(y0) such that x0 2 !(x; f) for uncountably many
x 2 T: Then S(f) = fx 2 T : x0 2 !(x; f)g is an uncountable !-scrambled
set with

T
y2S(p) ! (y; f) 6= �:�

Theorem 4.11.4: Suppose that fm satis�es the statement (11.1) , and
let S(fm) be an !� scrambled set as in statement (11.1). Suppose also that
for any x 2 S(fm) the following conditions are satis�ed:
(1) !(x; fm) contains a �nite, nonzero number of in�nite minimal sets.

(2) !(x; fm) contains only countably many points which are not in these

minimal sets.

Then f satis�es statement (11.1).

Proof : For any x 2 S(fm) and any fm � minimal set M either M �
!(x; f) or M \ !(x; f) = �: By Lemma 2.17.1 and hypothesis 1, !(x; f)

contains only �nitely many fm�minimal sets. Since S(fm) is uncountable,
there exists an uncountable subset S1(fm) such that !(x; f) contains the

same number of fm�minimal sets for each x 2 S1(fm): For x; y 2 S1(fm);say
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x~y if !(x; f) and !(y; f) contain the same fm � minimal sets. It is easy
to see that this is an equivalence relation. Note that for distinct x and

: !(x; fm)n!(y; fm) contains an in�nite fm � minimal set by De�nition
and hypothesis (2). Thus each equivalence class is �nite. Let S(f) be a

subset of S1(fm) which contains exactly one representative of each equiva-

lence class. Then S(f) is uncountable. Also for any pair of distinct points

x; y 2 S(f); !(x; f)n!(y; f) contains an in�nite minimal set and hence is
uncountable.�

Now let I denote a compact interval, and we suppose that f : I ! I is

a continuous map. Let C(21) denote the set of maps f with no periodic

points of periods not a power of two. Let P;AP;R, and � denote the sets of

periodic points, almost periodic points, recurrent points; and !-limit points,

respectively. Let �2 =
S
x2� !(x; f):

Proposition 4.11.5 [67]: !(x; f) contains only one minimal set for f 2
C(21):

Proposition 4.11.6 [68]: � n �2 is countable for any continuous map
f : I ! I:

Proposition 4.11.7[68]: �2 = R = AP for f 2 C(21):

Lemma 4.11.8: For f 2 C(21) and x 2 I, if !(x) � �2, then !(x) is
a minimal set.

Proof : By Proposition 4.11.5, !(x) contains a unique minimal setM . For

any y 2 !(x); we have !(y) � !(x), since !(x) is a closed invariant set. Then
y 2 !(x) � �2 = AP by Proposition 4.11.7. Thus !(y) is a minimal set, and
y 2 !(y): Hence M = !(y) and y 2M: Since y was arbitrary, !(x) =M:�

Proposition 4.11.9 [69]: If f has zero entropy, then f 2 C(21):
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Proposition 4.11.10: Let y and z be distinct points of I. If fy; zg is
an ! � scrambled set, then f has positive entropy.

Proof: Suppose that f does not have positive entropy. Then, by Propo-

sition 4.11.9, f 2 C (21). Suppose one of !(y) and !(z) is contained in �2:
By Lemma 4.11.8, if !(y) and !(z) have nonempty intersection, then one is

contained in the other. This contradicts the de�nition of an !-scrambled set.

So, both !(y) \ (�n�2) and !(z) \ (�n�2) are nonempty. By Proposition
4.11.5, !(y) contains a unique minimal setM(y), and !(z) contains a unique

minimal set M(z). It follows from Proposition 4.11.7 that !(y)\�2 =M(y)
and !(z) \ �2 = M(z):From the second condition of De�nition 2.17.1, we

know that !(y)\!(z) 6= �: Let u 2 !(y)\!(z). ThenM(y) = !(u) =M(z)
by Proposition 4.11.5 and Lemma 4.11.8. Thus,

!(y) \ �2 =M(y) =M(z) = !(z) \ �2

and

!(y)n!(z) � �n�2:

By Proposition 4.11.6, �n�2 is countable, and hence !(y)n!(z) is countable.
This contradicts the de�nition of an ! � scrambledset. Therefore f has

positive entropy.�

Proposition 4.11.11:[71] If f has positive entropy then there exists a
closed set X � I and m > 0 such that fm (X) = X and fmjX is at most

two-to-one semiconjugate to the one-sided shift map �. Furthermore, there

are only countably many points in � which have 2 preimages, and if one of

the preimages is periodic, then so is the other.

Proposition 4.11.12 [5]: The one-sided shift map is chaotic in the sense
of Devaney with a chaotic set �2:
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Proposition 4.11.13: If f : I ! I has positive entropy, then there is a

positive integer m such that fm is chaotic on I in the sense of Devaney.

Proof : Letm > 0 andX � I be as in Proposition 4.11.11. By Proposition
4.11.12, D(�) = �2 is a chaotic set. Let s 2 D(�) satisfy Orb(s; �) = D(�):
Let x 2 X be a preimage of s under the semiconjugacy in Proposition 4.11.11,

and letD(fm) = Orb (x; fm): ThenD (fm) � X, andD(fm) contains at least
one preimage of each point in D(�): It is not hard to show that the periodic

points in D(fm) are dense in D(fm) and fmjD(fm) has sensitive dependence
on initial conditions. Thus D(fm) is a chaotic set for fm:�

Proposition 4.11.14: If for some m > 0 , fm is chaotic in the sense

of Devaney, then f is also chaotic in the sense of Devaney. Furthermore, if

D(fm) is a chaotic set for fm, then
Sm�1
i=0 f

i (D (fm)) is a chaotic set for f .

Theorem 4.11.15: Let f be a continuous map of a compact interval I
to itself. The following statements are equivalent:

(I) f has positive topological entropy.

(II) There is an uncountable !-scrambled set S such that

T
x2s
! (x; f) 6= �

(III) f is !-chaotic.

(IV) There is an !-scrambled set containing exactly two points.

(V) f is chaotic in the sense of Devaney.

(VI) There is a chaotic set D and an uncountable !-scrambled set S � D.

Proof: (II) )(III) and (III) )(IV) are obvious. (IV) ) (I) is proved in

Proposition 4.11.10.
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Now let us prove that (I)) (II). By Proposition 4.11.11, there is a closed

subset X of I and a positive integer m such that fm(X) = X; and fmjX
is at most two-to-one semiconjugate (via a semiconjugacy h ) to the one-

sided shift map �. Also, there are at most countably many points in �2
which have two preimages under h. By Theorem 4.11.1, � satis�es statement

(11.1), so, by Theorem 4.11.3, fmjX satis�es the statement (11.1). Let S(�)
be the !�scrambled set constructed in Theorem 4.11.1, and S(fm) be the

!-scrambled set constructed in Theorem 4.11.3. Let x 2 S(fm), and let
h(x) = s 2 S(�):Then !(s; �) contains a unique in�nite minimal set M ,
and there are only countably many points of !(s; �) not in this minimal set.

Since h�1(M) is a closed invariant set as h(fm(h�1(M))) = �(h(h�1(M))) =

�(M) = M implies that fm(h�1(M)) � h�1(M)); h�1(M) must contain a
minimal set ~M . Then h maps ~M onto M since h( ~M) is a closed, invariant

subset of M, and hence, ~M is in�nite. Because there are only countably many

points in �2 which have two preimages and !(s; �)nM is countable, we have

that !(x; fm)n ~M is also countable. Since, x was arbitrary, the hypothesis of

Theorem 4.11.4 is satis�ed,and hence, statement (II) holds.

(VI) )( V) is obvious. (V) )( I) follows from Propositions 4.11.5 and

4.11.9 It remains to show that (I)) (VI). Suppose that f has positive

topological entropy. By Proposition 4.11.13 there is an integer m > 0 such

that fm is chaotic in the sense of Devaney. Let D(fm) be a chaotic set for

fm as in the proof of Proposition 4.11.13. Set

D (f) =
m�1S
i=0

f i (D (fm)) :

By Proposition 4.11.14, D(f) is a chaotic set for f . Clearly D(fm) �
D(f): Let S(�) be the !-scrambled set for � constructed in Theorem 4.11.1.

Let S(fm) be the collection of the preimages, under the semiconjugacy as in

Proposition 4.11.11, of the points in S(�) which have unique preimages. Since

there are only countably many points in �2 which have two preimages, S(fm)

must be uncountable. Using Theorem 4.11.3 and its proof, it is easy to see
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that S(fm) is an !-scrambled set for fm: By the proof of Proposition 4.11.13,

D(fm) contains at least one preimage of each point in �2: Since each point

in S(fm) is the unique preimage of some point in S(�); S(fm) � D(fm): Let
S(f) be the !-scrambled set for f constructed as in Theorem 4.11.4. Then

S(f) � S(fm) � D(fm) � D(f):

This completes the proof. �

Theorem 4.11.16[54]: For a continuous map f : I ! I, all implications

between various notions of chaos can be displayed as follows:

PTE , ! � Chaos, DC1, DC2, DC3 =) LY C

4.12 Li-York and Devaney

Here we will give an example of a function which is chaotic in the sense of

Li-Yorke and D-chaotic.[44]

Example 4.12.1: The piecewise linear map g : [0; 1]! [0; 1] with

g(0) = 0; g(
1

2
) = 1; g(1) = 0

is known as the (standard) tent map. Its graph is a �tent�with peak

of height 1 at the point 1
2
: In order to modify this map to get a family of

maps suitable for our purposes we cut the peak at any height � 2 [0; 1] and
consider the family of truncated tent maps de�ned by

g� : [0; 1]! [0; 1]; x! minf�; g(x)g; � 2 [0; 1]:
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It is apparent that for any 0 � � < ` � 1 the maps g� and g` coincide on
the set

J� = [0;
�

2
] [ [1� �

2
]; � 2 [0; 1]

and that (periodic) orbits of g` in J� are also (periodic) orbits of g� and

vice versa. Furthermore, since g� is constant on the open interval

K� := (
�

2
; 1� �

2
); � 2 [0; 1];

the map g� has at most one periodic point in �K�:

For the original tent map g(= g1) the set
�
2
7
; 4
7
; 6
7

	
is obviously a 3-periodic

orbit and therefore, by Sarkovskii�s Theorem, it has 2n-periodic points for all

n 2 N: Furthermore, it is easy to see that
j{x 2 [0; 1] j x is m-periodic with respect to g}j � 2m for all m 2 N .

(12.1) Therefore the number

�n := min{� 2 [0, 1] j g has a 2n-periodic orbit in [0,� ]}
is well de�ned and �n is a 2n-periodic point of g for any n 2 N . Because

of the relation g(K�n) = (�n; 1] we have O(�n, g) � J�n , and therefore �n is
also periodic with respect to g�n having the same periodic orbit as for g: By

Sarkovskii�s Theorem we have the identity

{2i j i = 0; 1; :::; n} = {k 2 N j x is k-periodic w.r. to g�n for some
x 2 [0; 1]} (12.2) because otherwise there were an m-periodic orbit M of g�n
for some m 2 N with m � 2n: Since g�n has at most one periodic point in
�K�n (the point �n) the inclusion M � J�n holds and with � := maxM < �n

the map g� and hence also g�n has a 2
n-periodic orbit in [0; �] \ J�: This

contradicts the minimality of �n. The sequence (�n)n2N is strongly increasing

because otherwise there would exist numbers n;m 2 N;m > n with �m � �n
such that the map g�m has a 2n-periodic orbit in [0; �m) and this would again

contradict the minimality of �n. On the other hand, the sequence (�n)n2N is

bounded above by 1 and therefore it has a limit
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�� = lim
n!1

�n

which is smaller then 6
7
since the map g 6

7
has periodic points of any period

n 2 N (by Sarkovskii�s Theorem). In addition, �� is greater than 4
5
, since

�2 =
4
5
: Indeed, it has been mentioned that �� = 0:8249080::::

The map g�� is L/Y-chaotic but not B/C-chaotic:In [4, VI Example 29] it

has been shown that not all points in [0, 1] are approximately periodic with

respect to g�� , and therefore g�� is L/Y-chaotic by Proposition .4.1.1 On the

other hand, assuming to the contrary that g�� is B/C-chaotic, by Theorem

2.2.25 there exists an odd number q > 1 such that g�� has a q2k-periodic orbit

P for some k � 0:In case p := maxP < �� there is an n 2 N with �n > p

such that P is a periodic orbit of g�n : This contradicts (12.2). If, on the other

hand, p = �� , by Sarkovskii�s Theorem the map g�� has a (q+2)2k-periodic

orbit Q: Because of maxQ < �� this again leads to a contradiction.

4.13 Summary

We can summarize the results presented in this chapter with the following

theorem.

Theorem 4.13.1: For a continuous map f : I ! I the following condi-

tions are equivalent:

(1) f is topologically chaotic, i.e., has positive topological entropy,

(2) f is DC1- chaotic,

(3) f is DC2- chaotic,

(4) f is DC3- chaotic,
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(5) f is !-chaotic,

(6) f is chaotic in the sense of Martelli,

(7) f is chaotic in the sense of Devaney,

(8) f is chaotic in the sense of Block and Coppel,

(9) f is chaotic in the sense of Robinson (Wiggins),

(10) f is chaotic in the sense of Touhey,

(11) f is chaotic in the sense of Kato,

(12) f is chaotic in the sense of Knudsen,

(13) f is t�chaotic .

All previous properties imply that f is chaotic in the sense of Li and

Yorke, but the converse is not true.

Kolyada and Snoha in [2] gives the following theorem where the proof of

it follows from de�nition and part of it can be found in [23] or [60] .

Theorem 4.13.2: Let (X; f) be a dynamical system. Then the following
are equivalent:

(1) f is topologically transitive ,

(2) for every pair of nonempty open sets U and V in X, there is a

nonnegative integer n such that fn(U) \ V 6= �;
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(3) for every nonempty open set U in X,
S1
n=1 f

n (U) is dense in X;

(4) for every nonempty open set U in X,
S1
n=0 f

n (U) is dense in X;

(5) for every pair of nonempty open sets U and V in X, there is a positive

integer n such that f�n(U) \ V 6= �,

(6) for every pair of nonempty open sets U and V in X, there is a

nonnegative integer n such that f�n(U) \ V 6= �;

(7) for every nonempty open set U in X,
S1
n=1 f

�n (U) is dense in X;

(8) for every nonempty open set U in X,
S1
n=0 f

�n (U) is dense in X;

(9) if E � X is closed and f(E) � E then E = X or E is nowhere

dense in X,

(10) if U � X is open and f�1(U) � U then U = � or U is dense in X,

(11) there exists a point x 2 X such that !(x; f) = X;

(12) there exists a G�-dense set A � X such that !(x; f) = X whenever

x 2 A,

(13) the set tr(f) is G�-dense,

(14) the map f is onto and the set tr(f) is nonempty,
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(15) 
(f) = X and tr(f) is nonempty,where


 (f) =
�
x 2 X j for every neighbourhood U of x; 9n � 1, f�n (U) \ U 6= �

	
(16) there is a point x 2 X such that the set ffn(x) : n = 1; 2; :::g is

dense in X:

From the above two theorems and theorems in chapter two and four we

get the following big theorem.

Theorem 4.13.3: For a continuous map f : I ! I the following condi-

tions are equivalent:

(1) f has positive topological entropy.

(2) There is an uncountable !-scrambled set S such that

T
x2s
! (x; f) 6= �

(3) f is !-chaotic.

(4) There is an !-scrambled set containing exactly two points.

(5) f is chaotic in the sense of Devaney.

(6) There is a chaotic set D and an uncountable !-scrambled set S � D.

(7) f is DC1- chaotic,

(8) f is DC2- chaotic,
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(9) f is DC3- chaotic,

(10) f is chaotic in the sense of Martelli,

(11) f is chaotic in the sense of Block and Coppel,

(12) f is chaotic in the sense of Robinson (Wiggins),

(13) f is chaotic in the sense of Touhey,

(14) f is chaotic in the sense of Kato,

(15) f is chaotic in the sense of Knudsen,

(16) f has a periodic point whose period is not a power of 2.

(17) fm is strictly turbulent for some positive integer m.

(18) f n is turbulent for some positive integer n.

(19) any �nite collection of non-empty open sets of I shares a periodic

orbit.

(20) any �nite collection of non-empty open sets of I shares in�nitely

many periodic orbits .

(21) for every pair of nonempty open sets U and V in I, there is a

nonnegative integer n such that fn(U) \ V 6= �;

(22) for every nonempty open set U in I,
S1
n=1 f

n (U) is dense in I ;

(23) for every nonempty open set U in I,
S1
n=0 f

n (U) is dense in I;
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(24) for every pair of nonempty open sets U and V in I, there is a positive

integer n such that f�n(U) \ V 6= �,

(25) for every pair of nonempty open sets U and V in I, there is a

nonnegative integer n such that f�n(U) \ V 6= �;

(26) for every nonempty open set U in I,
S1
n=1 f

�n (U) is dense in I;

(27) for every nonempty open set U in I,
S1
n=0 f

�n (U) is dense in I;

(28) if E � I is closed and f(E) � E then E = X or E is nowhere

dense in I,

(29) if U � I is open and f�1(U) � U then U = � or U is dense in I,

(30) there exists a point x 2 I such that !(x; f) = I;

(31) there exists a G�-dense set A � I such that !(x; f) = I whenever
x 2 A,

(32) the set tr(f) is G�-dense,

(33) the map f is onto and the set tr(f) is nonempty,

(34) 
(f) = I and tr(f) is nonempty.

Again, all previous properties imply that f is chaotic in the sense of Li

and Yorke, but the converse is not true.
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The following �gure summarize the results presented in this chapter.

L� chaos P � chaos =)
6 (=

DC1

& 6- + 6* m

AY � chaos (=
6 =)

D � chaos () DC2

. 6% m m

SD � chaos (=
6 =)

K � chaos () DC3

* 6+ m m
M � chaos () R� chaos () PTE

m m m
kato� chaos () t� chaos () BC � chaos

m m + 6*

! � chaos () T � chaos =)
6 (=

LY � chaos
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5 The Relations of De�nitions of Chaos in

General Case

In the case of the real interval we have presented theorems relating various

notions of chaos. In particular, we stated some equivalences.(here we follow

[39] and [54] )

What happens in general?

Things change completely and many problems are still open.[39]

We have seen in Theorem 4.13.1 that all notions presented, with the

exclusion of Li�Yorke chaos, are equivalent to topological chaos, i.e. the

function involved has positive topological entropy. In [72] it has been proven

that, in general distributional chaos need not imply positivity of entropy,

while the converse is an open problem. Continuing, there is a recent paper

[73] where the authors solve a long-standing open question by proving that

positive topological entropy implies Li�Yorke chaos. Since Devaney�s (and

Martelli�s) chaos is based on the notion of transitivity, it is natural to ask for

the relation between topological entropy and transitivity. Quoting [74] the

question whether the positivity of the entropy implies transitivity does not

make sense since transitivity is a global characteristic, while the positivity of

the entropy may be caused by the behavior of the function on an invariant

subset of the space.� In the other direction, the problem in its generality

appears still open [74].

Open problems are also the relations between the positivity of topological

entropy and Block�Coppel and !-chaos.

Now, we compare distributional chaos with the other notions (except for

positive entropy). According to Theorem 4.13.1 Li�Yorke chaos does not
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imply in general the distributional one, while in [75] an example is produced

of a map on R2 which is distributionally chaotic but not chaotic in Li�Yorke

sense. Thus, the two notions are independent.

Open problems are the relations between distributional chaos andMartelli�s,

Devaney�s, Block�Coppel and !-chaos.

It is now the turn of Li�Yorke chaos. By Theorem 4.13.1 Li�Yorke chaos

does not imply in general !-chaos, while in [76] it has been proven that an

!-chaotic map is always Li�Yorke chaotic.

We already know that in the case of the real interval Li�Yorke chaos does

not imply Devaney�s. Jie�Hua Mai in [77] proved that the reverse implication

holds.

A question arises: does Martelli�s or Block�Coppel chaos imply Li�Yorke?.

The problem is still open.[39]

Relations between !-chaos and Martelli�s, Devaney�s and Block�Coppel

are not known to the authors[39].

We compare now the two very similar notions of Martelli�s and Devaney�s

chaos. As already seen in chapter 2, Devaney�s chaos implies Martelli�s. On

the other hand it is proven in [18] that the function

F (�; �) =

(
(2�; � + 1) ; 0 � � < 0:5

(2� 2�; � + 1) ; 0:5 � � � 1

which maps the unit disk of the plane into itself, is chaotic in the sense

of Martelli, but not in the sense of Devaney.

Open problems appear to be the relations of Martelli�s and Devaney�s

chaos with Block�Coppel chaos.

The Robinson�s chaoticity implies the Kato�s chaoticity on the complete

metric space,but the converse is not true in general (see [56] ). The de�nition

of the Knudsen�s chaos is equivalent to the de�nition of the Kato�s chaos on

a compact metric space [57] .

Now we consider a general compact metric space X [54] : The next the-
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orem gives a survey. Since the implications strongly depend on the size of

scrambled sets, we restrict ourself to two-point scrambled sets in Theorem

5.1, and uncountable scrambled sets in Theorem 5.2.

Theorem 5.1[54]: Let f be a continuous map of a compact metric space,
and let �scrambeld set�means a two-point scrambled set. Then

DC1 =) DC2 =) DC3 & LYC,

!Chaos =) LYC,

and

PTE =) LYC.

There are no other implications, with possible exception for PTE =)
DC3.

Proof: The implications DC1 =) DC2 =) DC3 & LY-chaos follows

by de�nition, PTE =) LY-chaos was proved in [Blanchard et al. 2002]. Its

validity was an open problem for more than 15 years, cf. [Smital 1986]. The

implication !-chaos =) LY-chaos was proved by [Lampart 2002].

Next we give references to examples disproving particular implications:

LY � chaos 6 =) PTE: [Smital 1986], even for X = I:

LY � chaos 6 =) ! � chaos. [Smital 1986] and [S. Li 1993], even for
X = I.

LY � chaos 6 =) DC3 . [Schweizer, Smital 1994], even for X = I:

PTE 6 =) ! � chaos �take as X any minimal set supporting positive

topological entropy.
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DC1 6 =) PTE [Liao, Fan 1998], or [Wang, Liao 1999], or [Forti et al.

1999].

DC2 6 =) DC1:[Forti et al. 1999].

DC3 6 =) LY � chaos: [Babilonov´a 1999].

PTE 6 =) DC1 . [Pikula 2001].

PTE 6 =) DC2. [Sklar et al. 2002].

! � chaos 6 =) PTE . [Balibrea et al. 2003].

!-chaos 6 =) DC3 [Balibrea et al. 2003].

Theorem 5.2:[54] Let f be a continuous map of a compact metric space,
and let �scrambeld set�mean an uncountable scrambled set. Then:

DC1 =) DC2 =) DC3 & LY � chaos;

and

PTE =) LY � chaos:

There are no other implications, with possible exception for PTE =)
DC3, DC3 =) LYC,DC3 =) DC2, and DC2 =) DC1.

Proof: The implications DC1 =) DC2 =) DC3 & LY C follows

by de�nition, PTE =) LY C was proved in [Blanchard et al. 2002].

Next we give references to examples disproving particular implications:

LY � chaos 6 =) PTE: [Smital 1986], even for X = I:

LY � chaos 6 =) ! � chaos: [Smital 1986] and [S. Li 1993], even for
X = I:
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LY � chaos 6 =) DC3: [Schweizer, Sm´¬tal 1994], even for X = I:

DC1 6 =) PTE:[Liao, Fan 1998], or [Wang, Liao 1999], or [Forti et al.

1999].

! � chaos 6 =) LY � chaos:[Pikula 2001].
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6 Conclusion

In Chapter 2 and 3 we have given a number of de�nitions that can be put into

three groups: geometric (relating to sensitive dependence on initial condi-

tions), analytic (utilizing derivatives, such as PLE), and topological (relating

to mixing qualities of the iterates, such as transitive). Purely mathemati-

cally, all of these de�nitions are very interesting, but we are also concerned

with which de�nitions are most suitable in di¤erent situations.

On the one hand, for physical applications one can usually assemble only

a small number of observational data. It therefore follows that the most

general form of sensitive dependence on initial conditions (PSDIC) might

be most natural to use. Indeed, if one is actually getting data for weather

prediction, and similarly, if one obtains data from a double pendulum, then

USDIC and ESDIC and also analytic and topological conditions may well

not be applicable. When people outside of mathematics speak of chaos, they

are likely thinking of PSDIC; USDIC and ESDIC are important alternate

de�nitions of chaos, but are more valuable as mathematical constructs.

However, mathematically speaking, PSDIC has problems. For example,

f(x) = 2x has PSDIC, though one would not think of f(x) = 2x as a chaotic

function. Thus when considering functions isolated from applications, PSDIC

is not a satisfactory condition for considering a function to be chaotic.

On the other hand, if one has a function with a given formula, or a

system of di¤erential equations, then derivatives (or their higher dimension

analogues) become accessible and can yield much information, not only about

separation of iterates but also about the rate at which separation occurs.

Thus, the Lyapunov exponent is an important de�nition. Again, however,

using a PLE as the sole characteristic to de�ne a function as chaotic is not

satisfactory.

Afterwards various de�nitions of chaos were proposed. They do not co-

incide in general and none of them can be considered as the unique good
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de�nition of chaos. You may ask What is chaos then?. It relies generally on

the idea of unpredictability or instability, i.e., knowing the trajectory of one

point does not say what happens elsewhere. The map f : X ! X is said

sensitive to initial conditions if near every point x there exist arbitrarily close

points y such that the distance between fn(x) and fn(y) is greater than a

given �> 0 for some n. The chaos in the sense of Li-Yorke (see above) asks

for more instability but only on a subset. For Devaney, chaos is seen as a

mixing of unpredictability and regular behaviors: a system is chaotic in the

sense of Devaney if it is transitive, sensitive to initial conditions and has a

dense set of periodic points. Others put as a part of their de�nition that the

entropy should be positive, which means that the number of di¤erent trajec-

tories of length n, up to some approximation, grows exponentially fast. To

get something uniform, the system is often assumed to be transitive, roughly

speaking it means that it cannot be decomposed into two parts (with non

empty interiors) which do not interact under the action of the transforma-

tion. This basic assumption has actually strong consequences for systems

on one-dimensional spaces. For a continuous interval map, it implies most

of the other notions linked to chaos: sensitivity to initial conditions, dense

periodic points, positive entropy, chaos in the sense of Li-Yorke. This leads

to look for (partial) converses: for instance, if the interval map f is sensitive

to initial conditions then for some integer n the map fn is transitive on a

subinterval.

Finally, relationships between the de�nitions of chaos are very interest-

ing and important, and therefore have been used in combination in some

de�nitions of chaos. One must be careful, however, when combining these

characteristics. However in chapter four we give the relationships between

the de�nitions in compact interval and in chapter �ve we follow two papers

to give the relations in general case.
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